From Heisenberg to Hubbard: An initial state for the shallow quantum simulation of correlated electrons

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/140419
Información del item - Informació de l'item - Item information
Title: From Heisenberg to Hubbard: An initial state for the shallow quantum simulation of correlated electrons
Authors: Murta, Bruno | Fernández-Rossier, Joaquín
Research Group/s: Grupo de Nanofísica
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Digital quantum simulation | Correlated electrons | Fermi-Hubbard model | Heisenberg model
Issue Date: 16-Jan-2024
Publisher: American Physical Society
Citation: Physical Review B. 2024, 109: 035128. https://doi.org/10.1103/PhysRevB.109.035128
Abstract: The widespread use of the noninteracting ground state as the initial state for the digital quantum simulation of the Fermi-Hubbard model is largely due to the scarcity of alternative easy-to-prepare approximations to the exact ground state in the literature. Exploiting the fact that the spin- 1/2 Heisenberg model is the effective low-energy theory of the Fermi-Hubbard model at half-filling in the strongly interacting limit, here we propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model through a shallow circuit suitable for near-term quantum hardware. First, the ground state of the Heisenberg model is initialized via a hybrid variational method using an ansatz that explores only the correct symmetry subspace. Second, a general method is devised to convert a multi-spin- 1/2 wave function into its fermionic version. Third, taking inspiration from the Baeriswyl ansatz, a constant-depth single-parameter layer that adds doubloon-holon pairs is applied to this fermionic state. Numerical simulations on chains and ladders with up to 12 sites confirm the improvement over the noninteracting ground state of the overlap with the exact ground state for the intermediate values of the interaction strength at which quantum simulation is found to be most relevant. More broadly, the general scheme to convert a multi-spin- 1/2 state into a half-filled fermionic state may bridge the gap between quantum spin models and lattice models of correlated fermions in the realm of digital quantum simulation.
Sponsor: B.M. acknowledges financial support from Fundação para a Ciência e a Tecnologia (FCT)–Portugal through Ph.D. Scholarship No. SFRH/BD/08444/2020. J.F.R. acknowledges financial support from FCT (Grant No. PTDC/FISMAC/2045/2021), the Generalitat Valenciana funding No. Prometeo2021/017 and No. MFA/2022/045, and funding from MICIIN-Spain (Grants No. PID2019-109539GB-C41 and No. PID2022-141712NB-C22).
URI: http://hdl.handle.net/10045/140419
ISSN: 2469-9950 (Print) | 2469-9969 (Online)
DOI: 10.1103/PhysRevB.109.035128
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2024 American Physical Society
Peer Review: si
Publisher version: https://doi.org/10.1103/PhysRevB.109.035128
Appears in Collections:INV - Grupo de Nanofísica - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailMurta_Fernandez-Rossier_2024_PhysRevB.pdf2,23 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.