From Heisenberg to Hubbard: An initial state for the shallow quantum simulation of correlated electrons

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/140419
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorGrupo de Nanofísicaes_ES
dc.contributor.authorMurta, Bruno-
dc.contributor.authorFernández-Rossier, Joaquín-
dc.contributor.otherUniversidad de Alicante. Departamento de Física Aplicadaes_ES
dc.date.accessioned2024-02-05T12:35:20Z-
dc.date.available2024-02-05T12:35:20Z-
dc.date.issued2024-01-16-
dc.identifier.citationPhysical Review B. 2024, 109: 035128. https://doi.org/10.1103/PhysRevB.109.035128es_ES
dc.identifier.issn2469-9950 (Print)-
dc.identifier.issn2469-9969 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/140419-
dc.description.abstractThe widespread use of the noninteracting ground state as the initial state for the digital quantum simulation of the Fermi-Hubbard model is largely due to the scarcity of alternative easy-to-prepare approximations to the exact ground state in the literature. Exploiting the fact that the spin- 1/2 Heisenberg model is the effective low-energy theory of the Fermi-Hubbard model at half-filling in the strongly interacting limit, here we propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model through a shallow circuit suitable for near-term quantum hardware. First, the ground state of the Heisenberg model is initialized via a hybrid variational method using an ansatz that explores only the correct symmetry subspace. Second, a general method is devised to convert a multi-spin- 1/2 wave function into its fermionic version. Third, taking inspiration from the Baeriswyl ansatz, a constant-depth single-parameter layer that adds doubloon-holon pairs is applied to this fermionic state. Numerical simulations on chains and ladders with up to 12 sites confirm the improvement over the noninteracting ground state of the overlap with the exact ground state for the intermediate values of the interaction strength at which quantum simulation is found to be most relevant. More broadly, the general scheme to convert a multi-spin- 1/2 state into a half-filled fermionic state may bridge the gap between quantum spin models and lattice models of correlated fermions in the realm of digital quantum simulation.es_ES
dc.description.sponsorshipB.M. acknowledges financial support from Fundação para a Ciência e a Tecnologia (FCT)–Portugal through Ph.D. Scholarship No. SFRH/BD/08444/2020. J.F.R. acknowledges financial support from FCT (Grant No. PTDC/FISMAC/2045/2021), the Generalitat Valenciana funding No. Prometeo2021/017 and No. MFA/2022/045, and funding from MICIIN-Spain (Grants No. PID2019-109539GB-C41 and No. PID2022-141712NB-C22).es_ES
dc.languageenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights© 2024 American Physical Societyes_ES
dc.subjectDigital quantum simulationes_ES
dc.subjectCorrelated electronses_ES
dc.subjectFermi-Hubbard modeles_ES
dc.subjectHeisenberg modeles_ES
dc.titleFrom Heisenberg to Hubbard: An initial state for the shallow quantum simulation of correlated electronses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1103/PhysRevB.109.035128-
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.109.035128es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109539GB-C41es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-141712NB-C22es_ES
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMurta_Fernandez-Rossier_2024_PhysRevB.pdf2,23 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.