Broken-symmetry magnetic phases in two-dimensional triangulene crystals

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/139247
Información del item - Informació de l'item - Item information
Title: Broken-symmetry magnetic phases in two-dimensional triangulene crystals
Authors: Catarina, Gonçalo | Henriques, João C.G. | Molina-Sánchez, Alejandro | Costa, António T. | Fernández-Rossier, Joaquín
Research Group/s: Grupo de Nanofísica
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Magnetic phases | Two-dimensional triangulene crystals | Hubbard model | Density functional theory
Issue Date: 11-Dec-2023
Publisher: American Physical Society
Citation: Physical Review Research. 2023, 5: 043226. https://doi.org/10.1103/PhysRevResearch.5.043226
Abstract: We provide a comprehensive theory of magnetic phases in two-dimensional triangulene crystals, using both Hubbard model and density functional theory (DFT) calculations. We consider centrosymmetric and noncentrosymmetric triangulene crystals. In all cases DFT and the mean-field Hubbard model predict the emergence of broken-symmetry antiferromagnetic (ferrimagnetic) phases for the centrosymmetric (noncentrosymmetric) crystals. This includes the special case of the [4,4]triangulene crystal, whose noninteracting energy bands feature a gap with flat valence and conduction bands. We show how the lack of contrast between the local density of states of these bands, recently measured via scanning tunneling spectroscopy, is a natural consequence of a broken-symmetry Néel state that blocks intermolecular hybridization. Using random phase approximation, we also compute the spin wave spectrum of these crystals, including the recently synthesized [4,4]triangulene crystal. The results are in excellent agreement with the predictions of a Heisenberg spin model derived from multiconfiguration calculations for the unit cell. We conclude that experimental results are compatible with an antiferromagnetically ordered phase where each triangulene retains the spin predicted for the isolated species.
Sponsor: G.C. acknowledges financial support from Fundação para a Ciência e a Tecnologia (FCT) for the Ph.D. scholarship grant with reference No. SFRH/BD/138806/2018. J.F.-R., J.C.G.H., and A.T.C. acknowledge financial support from FCT (Grant No. PTDC/FIS-MAC/2045/2021), Swiss National Science Foundation (Grant No. CRSII5_205987), and the European Union (Grant FUNLAYERS-101079184). J.F.-R. acknowledges funding from FEDER/Junta de Andalucía (Grant No. P18-FR-4834), Generalitat Valenciana (Grants No. Prometeo2021/017 and No. MFA/2022/045), and MICIN-Spain (Grants No. PID2019-109539GB-C41 and No. PRTRC1y.I1). A.M.-S. acknowledges financial support by the Ramón y Cajal program (Grant No. RYC2018-024024-I; MINECO, Spain), Agencia Estatal de Investigación (AEI) through the project PID2020-112507GB-I00 (Novel quantum states in heterostructures of 2D materials), and the Generalitat Valenciana (Grants No. PROMETEO/2021/082 and No. SEJIGENT/2021/034). This study forms part of the Advanced Materials program and was supported by MCIN with funding from European Union NextGenerationEU (Grant No. PRTRC17.I1) and by the Generalitat Valenciana, project SPINO2D, reference MFA/2022/009.
URI: http://hdl.handle.net/10045/139247
ISSN: 2643-1564
DOI: 10.1103/PhysRevResearch.5.043226
Language: eng
Type: info:eu-repo/semantics/article
Rights: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Peer Review: si
Publisher version: https://doi.org/10.1103/PhysRevResearch.5.043226
Appears in Collections:INV - Grupo de Nanofísica - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailCatarina_etal_2023_PhysRevRes.pdf1,47 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.