Broken-symmetry magnetic phases in two-dimensional triangulene crystals

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/139247
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorGrupo de Nanofísicaes_ES
dc.contributor.authorCatarina, Gonçalo-
dc.contributor.authorHenriques, João C.G.-
dc.contributor.authorMolina-Sánchez, Alejandro-
dc.contributor.authorCosta, António T.-
dc.contributor.authorFernández-Rossier, Joaquín-
dc.contributor.otherUniversidad de Alicante. Departamento de Física Aplicadaes_ES
dc.date.accessioned2023-12-18T09:34:46Z-
dc.date.available2023-12-18T09:34:46Z-
dc.date.issued2023-12-11-
dc.identifier.citationPhysical Review Research. 2023, 5: 043226. https://doi.org/10.1103/PhysRevResearch.5.043226es_ES
dc.identifier.issn2643-1564-
dc.identifier.urihttp://hdl.handle.net/10045/139247-
dc.description.abstractWe provide a comprehensive theory of magnetic phases in two-dimensional triangulene crystals, using both Hubbard model and density functional theory (DFT) calculations. We consider centrosymmetric and noncentrosymmetric triangulene crystals. In all cases DFT and the mean-field Hubbard model predict the emergence of broken-symmetry antiferromagnetic (ferrimagnetic) phases for the centrosymmetric (noncentrosymmetric) crystals. This includes the special case of the [4,4]triangulene crystal, whose noninteracting energy bands feature a gap with flat valence and conduction bands. We show how the lack of contrast between the local density of states of these bands, recently measured via scanning tunneling spectroscopy, is a natural consequence of a broken-symmetry Néel state that blocks intermolecular hybridization. Using random phase approximation, we also compute the spin wave spectrum of these crystals, including the recently synthesized [4,4]triangulene crystal. The results are in excellent agreement with the predictions of a Heisenberg spin model derived from multiconfiguration calculations for the unit cell. We conclude that experimental results are compatible with an antiferromagnetically ordered phase where each triangulene retains the spin predicted for the isolated species.es_ES
dc.description.sponsorshipG.C. acknowledges financial support from Fundação para a Ciência e a Tecnologia (FCT) for the Ph.D. scholarship grant with reference No. SFRH/BD/138806/2018. J.F.-R., J.C.G.H., and A.T.C. acknowledge financial support from FCT (Grant No. PTDC/FIS-MAC/2045/2021), Swiss National Science Foundation (Grant No. CRSII5_205987), and the European Union (Grant FUNLAYERS-101079184). J.F.-R. acknowledges funding from FEDER/Junta de Andalucía (Grant No. P18-FR-4834), Generalitat Valenciana (Grants No. Prometeo2021/017 and No. MFA/2022/045), and MICIN-Spain (Grants No. PID2019-109539GB-C41 and No. PRTRC1y.I1). A.M.-S. acknowledges financial support by the Ramón y Cajal program (Grant No. RYC2018-024024-I; MINECO, Spain), Agencia Estatal de Investigación (AEI) through the project PID2020-112507GB-I00 (Novel quantum states in heterostructures of 2D materials), and the Generalitat Valenciana (Grants No. PROMETEO/2021/082 and No. SEJIGENT/2021/034). This study forms part of the Advanced Materials program and was supported by MCIN with funding from European Union NextGenerationEU (Grant No. PRTRC17.I1) and by the Generalitat Valenciana, project SPINO2D, reference MFA/2022/009.es_ES
dc.languageenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.es_ES
dc.subjectMagnetic phaseses_ES
dc.subjectTwo-dimensional triangulene crystalses_ES
dc.subjectHubbard modeles_ES
dc.subjectDensity functional theoryes_ES
dc.titleBroken-symmetry magnetic phases in two-dimensional triangulene crystalses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1103/PhysRevResearch.5.043226-
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevResearch.5.043226es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109539GB-C41es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-024024-Ies_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112507GB-I00es_ES
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCatarina_etal_2023_PhysRevRes.pdf1,47 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.