Multi-Objective Optimization of Renewable Energy-Driven Desalination Systems

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/70021
Información del item - Informació de l'item - Item information
Title: Multi-Objective Optimization of Renewable Energy-Driven Desalination Systems
Authors: Onishi, Viviani C. | Ruiz-Femenia, Rubén | Salcedo Díaz, Raquel | Carrero-Parreño, Alba | Labarta, Juan A. | Caballero, José A.
Research Group/s: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Química
Keywords: Multi-objective | Optimization | Zero-liquid discharge | ZLD | Solar energy | Rankine cycle | Life cycle assessment | LCA
Knowledge Area: Ingeniería Química
Date Created: 2-Sep-2017
Issue Date: 2-Oct-2017
Publisher: Elsevier
Citation: Computer Aided Chemical Engineering. 2017, 40: 499-504. doi:10.1016/B978-0-444-63965-3.50085-4
Abstract: Environmental impacts related to increasing greenhouse gas emissions and depletion of fossil-fuel reserves and water resources are major global concerns. In this work, we introduce a new multi-objective optimization model for simultaneous synthesis of zero-emission desalination plants driven by renewable energy. The system is particularly developed for zero-liquid discharge (ZLD) desalination of high-salinity shale gas wastewater, aiming to enhance economic and environmental system performance. The mathematical model is based on a multistage superstructure, which integrates a solar assisted Rankine cycle to a multiple-effect evaporation with mechanical vapor recompression (MEE-MVR) plant. For achieving the goal of more sustainable ZLD process, we specify the discharge brine salinity near to salt saturation conditions. The model is formulated as a multi-objective multiperiod non-linear programming (NLP) problem. The model is implemented in GAMS and solved via epsilon-constraint method, through the minimization of total annualized cost and environmental impacts. The economic objective function accounts for capital cost of investment and operational expenses, while environmental criteria are quantified by the life cycle assessment (LCA)-based ReCiPe methodology. A case study is performed to demonstrate the capabilities of the developed model. The obtained set of trade-off Pareto-optimal solutions reveals that integration of renewable energy generation to ZLD desalination plants can lead to significant cost and environmental savings for shale gas industry.
Description: 27th European Symposium on Computer Aided Process Engineering (ESCAPE 27), Barcelona, 1st-5th October, 2017.
Sponsor: European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640979.
URI: http://hdl.handle.net/10045/70021
ISBN: 978-0-444-64078-9
ISSN: 1570-7946
DOI: 10.1016/B978-0-444-63965-3.50085-4
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Rights: Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0
Peer Review: si
Publisher version: https://doi.org/10.1016/B978-0-444-63965-3.50085-4
Appears in Collections:INV - CONCEPT - Comunicaciones a Congresos, Conferencias, etc.
Research funded by the EU
INV - ETMyCCA - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailPoster_ESCAPE27_3076_MOsolar.pdfPóster1,44 MBAdobe PDFOpen Preview
Thumbnail3076_preprint_ESCAPE27_MO_MEE_ER.pdfPreprint (acceso abierto)258,53 kBAdobe PDFOpen Preview
Thumbnail3076_final_ESCAPE27_MO_MEE_ER.pdfVersión final (acceso restringido)621,7 kBAdobe PDFOpen    Request a copy


This item is licensed under a Creative Commons License Creative Commons