New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/142503
Información del item - Informació de l'item - Item information
Title: New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves
Authors: Llorenç-Vicedo, Aitana | Lluesma Gómez, Mónica | Zeising, Ole | Kleiner, Thomas | Freitag, Johannes | Martinez-Hernandez, Francisco | Wilhelms, Frank | Martinez-Garcia, Manuel
Research Group/s: Ecología Microbiana Molecular
Center, Department or Service: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Keywords: Antarctic | Ice shelf | Single-cell genomics | Marine ice | Microbiome | Bacteria | Metagenomics | DNA sequencing
Issue Date: 26-Apr-2024
Publisher: American Society for Microbiology
Citation: mSphere. 2024. https://doi.org/10.1128/msphere.00073-24
Abstract: The signs of climate change are undeniable, and the impact of these changes on ecosystem function heavily depends on the response of microbes that underpin the food web. Antarctic ice shelf is a massive mass of floating ice that extends from the continent into the ocean, exerting a profound influence on global carbon cycles. Beneath Antarctic ice shelves, marine ice stores valuable genetic information, where marine microbial communities before the industrial revolution are archived. Here, in this proof-of-concept, by employing a combination of single-cell technologiesand metagenomics, we have been able to sequence frozen microbial DNA (≈300 years old) stored in the marine ice core B15 collected from the Filchnner-Ronne Ice Shelf. Metagenomic data indicated that Proteobacteria and Thaumarchaeota (e.g., Nitrosopumilus spp.), followed by Actinobacteria (e.g., Actinomarinales), were abundant. Remarkably, our data allow us to “travel to the past” and calibrate genomic and genetic evolutionary changes for ecologically relevant microbes and functions, such as Nitrosopumilus spp., preserved in the marine ice (≈300 years old) with those collected recently in seawater under an ice shelf (year 2017). The evolutionary divergence for the ammonia monooxygenase gene amoA involved in chemolithoautotrophy was about 0.88 amino acid and 2.8 nucleotide substitution rate per 100 sites in a century, while the accumulated rate of genomic SNPs was 2,467 per 1 Mb of genome and 100 years. Whether these evolutionary changes remained constant over the last 300 years or accelerated during post-industrial periods remains an open question that will be further elucidated.
Sponsor: The authors thank the research grants funded by the Spanish Ministry of Science and Innovation and Agencia Estatal de Investigación (PID2021-125175OB-I00).
URI: http://hdl.handle.net/10045/142503
ISSN: 2379-5042
DOI: 10.1128/msphere.00073-24
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2024 Llorenç Vicedo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Peer Review: si
Publisher version: https://doi.org/10.1128/msphere.00073-24
Appears in Collections:INV - EMM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailLlorenc-Vicedo_etal_2024_mSphere.pdf2,13 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.