New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142503
Información del item - Informació de l'item - Item information
Título: New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves
Autor/es: Llorenç-Vicedo, Aitana | Lluesma Gómez, Mónica | Zeising, Ole | Kleiner, Thomas | Freitag, Johannes | Martinez-Hernandez, Francisco | Wilhelms, Frank | Martinez-Garcia, Manuel
Grupo/s de investigación o GITE: Ecología Microbiana Molecular
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Palabras clave: Antarctic | Ice shelf | Single-cell genomics | Marine ice | Microbiome | Bacteria | Metagenomics | DNA sequencing
Fecha de publicación: 26-abr-2024
Editor: American Society for Microbiology
Cita bibliográfica: mSphere. 2024. https://doi.org/10.1128/msphere.00073-24
Resumen: The signs of climate change are undeniable, and the impact of these changes on ecosystem function heavily depends on the response of microbes that underpin the food web. Antarctic ice shelf is a massive mass of floating ice that extends from the continent into the ocean, exerting a profound influence on global carbon cycles. Beneath Antarctic ice shelves, marine ice stores valuable genetic information, where marine microbial communities before the industrial revolution are archived. Here, in this proof-of-concept, by employing a combination of single-cell technologiesand metagenomics, we have been able to sequence frozen microbial DNA (≈300 years old) stored in the marine ice core B15 collected from the Filchnner-Ronne Ice Shelf. Metagenomic data indicated that Proteobacteria and Thaumarchaeota (e.g., Nitrosopumilus spp.), followed by Actinobacteria (e.g., Actinomarinales), were abundant. Remarkably, our data allow us to “travel to the past” and calibrate genomic and genetic evolutionary changes for ecologically relevant microbes and functions, such as Nitrosopumilus spp., preserved in the marine ice (≈300 years old) with those collected recently in seawater under an ice shelf (year 2017). The evolutionary divergence for the ammonia monooxygenase gene amoA involved in chemolithoautotrophy was about 0.88 amino acid and 2.8 nucleotide substitution rate per 100 sites in a century, while the accumulated rate of genomic SNPs was 2,467 per 1 Mb of genome and 100 years. Whether these evolutionary changes remained constant over the last 300 years or accelerated during post-industrial periods remains an open question that will be further elucidated.
Patrocinador/es: The authors thank the research grants funded by the Spanish Ministry of Science and Innovation and Agencia Estatal de Investigación (PID2021-125175OB-I00).
URI: http://hdl.handle.net/10045/142503
ISSN: 2379-5042
DOI: 10.1128/msphere.00073-24
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 Llorenç Vicedo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Revisión científica: si
Versión del editor: https://doi.org/10.1128/msphere.00073-24
Aparece en las colecciones:INV - EMM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLlorenc-Vicedo_etal_2024_mSphere.pdf2,13 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.