Unraveling the impact of temperature on the reaction kinetics of the electro-oxidation of methanol on Pt(1 0 0)

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141160
Información del item - Informació de l'item - Item information
Título: Unraveling the impact of temperature on the reaction kinetics of the electro-oxidation of methanol on Pt(1 0 0)
Autor/es: Paredes-Salazar, Enrique A. | Calderón-Cárdenas, Alfredo | Herrero, Enrique | Varela, Hamilton
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Methanol electro-oxidation | Oscillatory dynamics | Single-crystal electrodes | Temperature | Activation energy
Fecha de publicación: 1-mar-2024
Editor: Elsevier
Cita bibliográfica: Journal of Catalysis. 2024, 432: 115402. https://doi.org/10.1016/j.jcat.2024.115402
Resumen: Methanol is one of the key molecules in the challenge towards a sustainable future, particularly as a renewable hydrogen carrier fuel and as a low-carbon and net carbon-neutral liquid chemical. For most applications, it is imperative to understand the impact of temperature on the methanol electro-oxidation reaction (MEOR). In this study, the influence of the temperature on the kinetics of the MEOR and the parallel reaction pathways is assessed by investigating responses in both conventional and oscillatory regimes using a single-crystal Pt(1 0 0) electrode. Our findings demonstrate that chronoamperometric measurements under steady-state conditions provide more reliable values for apparent activation energies compared to transient conditions. Furthermore, a temperature-dependent shift in the dominance of specific oxidation pathways is observed, analogous to a kinetic and thermodynamic control mechanism, preventing the complete poisoning of the electrode surface. Specifically, oxidation pathways leading to the formation of reaction byproducts predominate at lower temperatures, while the oxidation pathway via COad becomes dominant at temperatures exceeding 30 °C. Moreover, our research shows that, at shorter times, temperature changes minimally affect the mean potential required to sustain the applied current during the oscillations in a galvanostatic experiment, which is closely linked with the voltaic efficiency. However, over longer periods, when mass transport phenomena become significant and mixed-mode oscillations occur, elevated temperatures increase the mean potential, resulting in reduced voltaic efficiency. Therefore, to facilitate the complete conversion of methanol to CO2 without increasing the mean potential for current maintenance, it is essential not only to increase the temperature but also to improve the mass transport conditions to mitigate the mixed-mode oscillations, despite their lower minima reached during oscillation. This idea challenges the conventional assumption that a lower minimum potential implies a lower mean potential during oscillations. This advancement propels our understanding to a more sophisticated level, providing valuable insights to guide the materials design to increase the conversion efficiency and optimize the operating temperature of devices crucial to energy conversion.
Patrocinador/es: E.P-S. acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (#140644/2020-2). H.V. acknowledges the São Paulo Research Foundation (FAPESP) for financial support (#2019/22183-6); the support of the RCGI – Research Centre for Gas Innovation, hosted by the University of São Paulo (USP) and sponsored by FAPESP (#2020/15230-5) and Shell Brasil, and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation; and the CNPq for financial support (#306060/2017-5). This work is also partially financed by Ministerio de Ciencia e Innovación (Project PID2022-137350NB-I00). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.
URI: http://hdl.handle.net/10045/141160
ISSN: 0021-9517 (Print) | 1090-2694 (Online)
DOI: 10.1016/j.jcat.2024.115402
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jcat.2024.115402
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailParedes-Salazar_etal_2024_JCatalysis.pdf4,59 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.