Unraveling the impact of temperature on the reaction kinetics of the electro-oxidation of methanol on Pt(1 0 0)

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141160
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorElectroquímica de Superficieses_ES
dc.contributor.authorParedes-Salazar, Enrique A.-
dc.contributor.authorCalderón-Cárdenas, Alfredo-
dc.contributor.authorHerrero, Enrique-
dc.contributor.authorVarela, Hamilton-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Electroquímicaes_ES
dc.date.accessioned2024-03-01T11:08:44Z-
dc.date.available2024-03-01T11:08:44Z-
dc.date.issued2024-03-01-
dc.identifier.citationJournal of Catalysis. 2024, 432: 115402. https://doi.org/10.1016/j.jcat.2024.115402es_ES
dc.identifier.issn0021-9517 (Print)-
dc.identifier.issn1090-2694 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/141160-
dc.description.abstractMethanol is one of the key molecules in the challenge towards a sustainable future, particularly as a renewable hydrogen carrier fuel and as a low-carbon and net carbon-neutral liquid chemical. For most applications, it is imperative to understand the impact of temperature on the methanol electro-oxidation reaction (MEOR). In this study, the influence of the temperature on the kinetics of the MEOR and the parallel reaction pathways is assessed by investigating responses in both conventional and oscillatory regimes using a single-crystal Pt(1 0 0) electrode. Our findings demonstrate that chronoamperometric measurements under steady-state conditions provide more reliable values for apparent activation energies compared to transient conditions. Furthermore, a temperature-dependent shift in the dominance of specific oxidation pathways is observed, analogous to a kinetic and thermodynamic control mechanism, preventing the complete poisoning of the electrode surface. Specifically, oxidation pathways leading to the formation of reaction byproducts predominate at lower temperatures, while the oxidation pathway via COad becomes dominant at temperatures exceeding 30 °C. Moreover, our research shows that, at shorter times, temperature changes minimally affect the mean potential required to sustain the applied current during the oscillations in a galvanostatic experiment, which is closely linked with the voltaic efficiency. However, over longer periods, when mass transport phenomena become significant and mixed-mode oscillations occur, elevated temperatures increase the mean potential, resulting in reduced voltaic efficiency. Therefore, to facilitate the complete conversion of methanol to CO2 without increasing the mean potential for current maintenance, it is essential not only to increase the temperature but also to improve the mass transport conditions to mitigate the mixed-mode oscillations, despite their lower minima reached during oscillation. This idea challenges the conventional assumption that a lower minimum potential implies a lower mean potential during oscillations. This advancement propels our understanding to a more sophisticated level, providing valuable insights to guide the materials design to increase the conversion efficiency and optimize the operating temperature of devices crucial to energy conversion.es_ES
dc.description.sponsorshipE.P-S. acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (#140644/2020-2). H.V. acknowledges the São Paulo Research Foundation (FAPESP) for financial support (#2019/22183-6); the support of the RCGI – Research Centre for Gas Innovation, hosted by the University of São Paulo (USP) and sponsored by FAPESP (#2020/15230-5) and Shell Brasil, and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation; and the CNPq for financial support (#306060/2017-5). This work is also partially financed by Ministerio de Ciencia e Innovación (Project PID2022-137350NB-I00). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).es_ES
dc.subjectMethanol electro-oxidationes_ES
dc.subjectOscillatory dynamicses_ES
dc.subjectSingle-crystal electrodeses_ES
dc.subjectTemperaturees_ES
dc.subjectActivation energyes_ES
dc.titleUnraveling the impact of temperature on the reaction kinetics of the electro-oxidation of methanol on Pt(1 0 0)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.jcat.2024.115402-
dc.relation.publisherversionhttps://doi.org/10.1016/j.jcat.2024.115402es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailParedes-Salazar_etal_2024_JCatalysis.pdf4,59 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.