Visual Servoing NMPC Applied to UAVs for Photovoltaic Array Inspection

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/140752
Información del item - Informació de l'item - Item information
Título: Visual Servoing NMPC Applied to UAVs for Photovoltaic Array Inspection
Autor/es: Velasco, Edison P. | Recalde, Luis F. | Guevara, Bryan S. | Varela-Aldás, José | Candelas-Herías, Francisco A. | Puente Méndez, Santiago T. | Gandolfo, Daniel C.
Grupo/s de investigación o GITE: Automática, Robótica y Visión Artificial
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Investigación Informática
Palabras clave: Aerial systems: Perception and autonomy | Optimization and optimal control | Visual servoing
Fecha de publicación: 31-ene-2024
Editor: IEEE
Cita bibliográfica: IEEE Robotics and Automation Letters. 2024, 9(3): 2766-2773. http://doi.org/10.1109/LRA.2024.3360876
Resumen: The photovoltaic (PV) industry is seeing a significant shift toward large-scale solar plants, where traditional inspection methods have proven to be time-consuming and costly. Currently, the predominant approach to PV inspection using unmanned aerial vehicles (UAVs) is based on the capture and detailed analysis of aerial images (photogrammetry). However, the photogrammetry approach presents limitations, such as an increased amount of useless data and potential issues related to image resolution that negatively impact the detection process during high-altitude flights. In this work, we develop a visual servoing control system with dynamic compensation using nonlinear model predictive control (NMPC) applied to a UAV. This system is capable of accurately tracking the middle of the underlying PV array at various frontal velocities and height constraints, ensuring the acquisition of detailed images during low-altitude flights. The visual servoing controller is based on extracting features using RGB-D images and employing a Kalman filter to estimate the edges of the PV arrays. Furthermore, this work demonstrates the proposal in both simulated and real-world environments using the commercial aerial vehicle (DJI Matrice 100), with the purpose of showcasing the results of the architecture.
Patrocinador/es: This work was supported in part by the Ministry of Science and Innovation of the Spanish Government under the research Project PID2021-122685OBI00 and in part by the training of research Ph.D. staff under Grant PRE2019-088069.
URI: http://hdl.handle.net/10045/140752
ISSN: 2377-3766
DOI: 10.1109/LRA.2024.3360876
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Revisión científica: si
Versión del editor: http://doi.org/10.1109/LRA.2024.3360876
Aparece en las colecciones:INV - AUROVA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailVelasco-Sanchez_etal_2024_IEEE-RAL.pdf5,31 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.