Boosting Oxygen Reduction at Pt(111)|Proton Exchange Ionomer Interfaces through Tuning the Microenvironment Water Activity

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/139927
Información del item - Informació de l'item - Item information
Title: Boosting Oxygen Reduction at Pt(111)|Proton Exchange Ionomer Interfaces through Tuning the Microenvironment Water Activity
Authors: Xu, Yujun | Zhang, Lulu | Chen, Wei | Cui, Haowen | Cai, Jun | Chen, Yanxia | Feliu, Juan M. | Herrero, Enrique
Research Group/s: Electroquímica de Superficies
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Pt(111) | Ionomer | Adsorption | Water activity | Oxygen reduction reaction
Issue Date: 16-Jan-2024
Publisher: American Chemical Society
Citation: ACS Applied Materials & Interfaces. 2024, 16(4): 4540-4549. https://doi.org/10.1021/acsami.3c14208
Abstract: A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.
Sponsor: This work was supported by the National Natural Science Foundation of China (Nos. 21972131, 22372154). E.H. gratefully acknowledges the International Professorship by USTC and financial support from the Ministerio de Ciencia e Innovación (Project PID2022-137350NB-I00).
URI: http://hdl.handle.net/10045/139927
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.3c14208
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2024 American Chemical Society
Peer Review: si
Publisher version: https://doi.org/10.1021/acsami.3c14208
Appears in Collections:INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailXu_etal_2024_ACSApplMaterInterfaces_final.pdfVersión final (acceso restringido)3,53 MBAdobe PDFOpen    Request a copy
ThumbnailXu_etal_2024_ACSApplMaterInterfaces_preprint.pdfPreprint (acceso abierto)1,98 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.