Characterization of Technosols for Urban Agriculture

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/138583
Información del item - Informació de l'item - Item information
Title: Characterization of Technosols for Urban Agriculture
Authors: Ferrández-Gómez, Borja | Jordá Guijarro, Juana Dolores | Sanchez Sanchez, Antonio | Cerdán, Mar
Research Group/s: Química Agrícola
Center, Department or Service: Universidad de Alicante. Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Keywords: Asbestos | Climate | Heavy metals | Organic matter | Peri-urban agriculture | Pollution | Technosols
Issue Date: 9-Nov-2023
Publisher: MDPI
Citation: Ferrández-Gómez B, Jordá JD, Sánchez-Sánchez A, Cerdán M. Characterization of Technosols for Urban Agriculture. Sustainability. 2023; 15(22):15769. https://doi.org/10.3390/su152215769
Abstract: Soil characterization is essential for planning activities in urban areas in order to detect potential risks and understand the possible impacts derived from those activities. Nine soils located in Alicante (southeast of Spain) developed over construction debris were studied. Soil characteristics including mineralogy, elemental composition and metal availability were analyzed in two consecutive years, 2019 and 2020. These soils were similar to forest soils in the same area, with no evidence of asbestos clays or excess harmful elements. However, the use of DTPA extraction revealed high levels of Mn and Zn in some soils. Organic carbon and metals extracted with DTPA differed in 2019 and 2020, but no relationship between metal-DTPA and organic carbon content was observed. In general, organic matter content was higher in 2019, and elements extracted with DTPA were lower. The above-average rainfall in 2019 could have led to the washing away of dissolved materials and fine soil particles, decreasing elemental availability on the one hand, while promoting the development of natural vegetation, increasing soil organic matter, and immobilizing elements in living organisms on the other hand. The fact that the metal mobility varies depending on weather and soil characteristics is important when planning. Despite the demonstrated advantages of increasing urban green areas from an environmental and social point of view, we should not forget the materials on which urban soils are developed. Therefore, it is essential to establish annual plans for monitoring variations in the availability of heavy metals. This is of the most relevance when the plants are for human consumption. It is therefore also necessary to control the vegetables that grow on these soils and, in the event of possible problems, use the soil for gardening.
URI: http://hdl.handle.net/10045/138583
ISSN: 2071-1050
DOI: 10.3390/su152215769
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/su152215769
Appears in Collections:INV - Química Agrícola - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailFerrandez-Gomez_etal_2023_Sustainability.pdf1,26 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.