Lithospheric contraction concentric to Tharsis: 3D structural modeling of large thrust faults between Thaumasia highlands and Aonia Terra, Mars

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138122
Información del item - Informació de l'item - Item information
Título: Lithospheric contraction concentric to Tharsis: 3D structural modeling of large thrust faults between Thaumasia highlands and Aonia Terra, Mars
Autor/es: Herrero-Gil, Andrea | Egea‐González, Isabel | Jiménez‐Díaz, Alberto | Rivas Dorado, Sam | Parro, Laura M. | Fernández, Carlos | Ruiz, Javier | Romeo, Ignacio
Grupo/s de investigación o GITE: Astronomía y Astrofísica
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: 3D structural modeling | Mars | Lobate scarp | Thrust fault | Tharsis
Fecha de publicación: 20-oct-2023
Editor: Elsevier
Cita bibliográfica: Journal of Structural Geology. 2023, 177: 104983. https://doi.org/10.1016/j.jsg.2023.104983
Resumen: Large thrust faults on Mars are caused by lithospheric planetary contraction. The geometry of these faults is linked with the mechanical behavior of the lithosphere. Tharsis, the largest volcano-tectonic province on Mars, controls the global tectonic pattern of the planet. Here, we present a study of five large thrust faults concentric to Tharsis, located between the Thaumasia Highlands and the Argyre impact basin. We applied a 3D structural modeling, using a combination of fault-parallel flow and trishear algorithms to estimate the geometry and kinematics of the faults at depth. The modeled faults show an upper planar part dipping 33° to 40°, rooting with a listric geometry into horizontal levels at 13–27 km depth, with fault slips of 801–3366 m. The general out-of-Tharsis vergence, the listric fault geometries and the deepening of the depth of faulting toward Thaumasia outline an incipient thrust wedge architecture. Assuming that the largest faults rooted at the Brittle-Ductile Transition, we calculate a heat flow at the time of faulting of 24–54 mW m−2. The obtained strength envelopes for dry and wet conditions show that all the strength of the lithosphere was located in the upper half of the crust.
Patrocinador/es: This research has been supported by the project TECTOMARS PGC2018-095340-B-I00, funded by the Spanish Ministry of Science, Innovation and Universities.
URI: http://hdl.handle.net/10045/138122
ISSN: 0191-8141 (Print) | 1873-1201 (Online)
DOI: 10.1016/j.jsg.2023.104983
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jsg.2023.104983
Aparece en las colecciones:INV - Astronomía y Astrofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailHerrero-Gil_etal_2023_JStructGeol.pdf16,47 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.