Alternative KKT conditions for (semi)infinite convex optimization

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/137498
Información del item - Informació de l'item - Item information
Title: Alternative KKT conditions for (semi)infinite convex optimization
Authors: Correa, Rafael | Hantoute, Abderrahim | López Cerdá, Marco A.
Research Group/s: Laboratorio de Optimización (LOPT)
Center, Department or Service: Universidad de Alicante. Departamento de Matemáticas
Keywords: Infinite-dimensional convex optimization | Semi-infinite convex programming | Supremum of convex functions | Subdifferential calculus | KKT-optimality conditions
Issue Date: 15-Sep-2023
Publisher: Taylor & Francis
Citation: Optimization. 2023. https://doi.org/10.1080/02331934.2023.2256752
Abstract: This paper is intended to provide an updated survey of recent optimality theory for infinite-dimensional convex programming. It aims at establishing theoretical support for algorithmic developments. Two alternative strategies inspire the approaches presented in the paper. The first one consists of replacing the family of constraints by a single one, appealing to the supremum function, and is based on various characterizations of the subdifferential of the pointwise supremum of convex functions. The second one uses appropriate characterizations of affine consequent inequalities of the constraint system exploiting ad hoc constraint qualifications.
Sponsor: The first author was partially supported by ANID grant Fondecyt Regular 1190110 and Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile. The research of the second and third author is supported by the Research Project PGC2018-097960-B-C21 from MICINN, Spain. The research of the second author is also supported by MICIU of Spain and Universidad de Alicante (Contract Beatriz Galindo BEA- GAL 18/00205), AICO/2021/165 of Generalitat Valenciana, and Basal CMM FB210005. The third author is also supported by the Australian ARC – Discovery Projects DP 180100602.
URI: http://hdl.handle.net/10045/137498
ISSN: 0233-1934 (Print) | 1029-4945 (Online)
DOI: 10.1080/02331934.2023.2256752
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 Informa UK Limited, trading as Taylor & Francis Group
Peer Review: si
Publisher version: https://doi.org/10.1080/02331934.2023.2256752
Appears in Collections:INV - LOPT - Artículos de Revistas
INV - GAM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailCorrea_etal_2023_Optimization_final.pdfVersión final (acceso restringido)1,68 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.