Explainability techniques applied to road traffic forecasting using Graph Neural Network models

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/135268
Información del item - Informació de l'item - Item information
Títol: Explainability techniques applied to road traffic forecasting using Graph Neural Network models
Autors: García-Sigüenza, Javier | Llorens Largo, Faraón | Tortosa, Leandro | Vicent, Jose F.
Grups d'investigació o GITE: Análisis y Visualización de Datos en Redes (ANVIDA) | Grupo de Investigación en Tecnologías Inteligentes para el Aprendizaje (Smart Learning)
Centre, Departament o Servei: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Paraules clau: Graph neural networks | Deep learning | Data analysis | Explainability | Traffic flow
Data de publicació: 16-de juny-2023
Editor: Elsevier
Citació bibliogràfica: Information Sciences. 2023, 645: 119320. https://doi.org/10.1016/j.ins.2023.119320
Resum: In recent years, several new Artificial Intelligence methods have been developed to make models more explainable and interpretable. The techniques essentially deal with the implementation of transparency and traceability of black box machine learning methods. Black box refers to the inability to explain why the model turns the input into the output, which may be problematic in some fields. To overcome this problem, our approach provides a comprehensive combination of predictive and explainability techniques. Firstly, we compared statistical regression, classic machine learning and deep learning models, reaching the conclusion that models based on deep learning exhibit greater accuracy. Of the great variety of deep learning models, the best predictive model in spatio-temporal traffic datasets was found to be the Adaptive Graph Convolutional Recurrent Network. Regarding the explainability technique, GraphMask shows a notably higher fidelity metric than other methods. The integration of both techniques was tested by means of experimental results, concluding that our approach improves deep learning model accuracy, making such models more transparent and interpretable. It allows us to discard up to 95% of the nodes used, facilitating an analysis of its behavior and thus improving the understanding of the model.
URI: http://hdl.handle.net/10045/135268
ISSN: 0020-0255 (Print) | 1872-6291 (Online)
DOI: 10.1016/j.ins.2023.119320
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisió científica: si
Versió de l'editor: https://doi.org/10.1016/j.ins.2023.119320
Apareix a la col·lecció: INV - Smart Learning - Artículos de Revistas
INV - ANVIDA - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
ThumbnailGarcia-Siguenza_etal_2023_InformatSci.pdf6,25 MBAdobe PDFObrir Vista prèvia


Aquest ítem està subjecte a una llicència de Creative Commons Llicència Creative Commons Creative Commons