Explainability techniques applied to road traffic forecasting using Graph Neural Network models

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/135268
Información del item - Informació de l'item - Item information
Título: Explainability techniques applied to road traffic forecasting using Graph Neural Network models
Autor/es: García-Sigüenza, Javier | Llorens Largo, Faraón | Tortosa, Leandro | Vicent, Jose F.
Grupo/s de investigación o GITE: Análisis y Visualización de Datos en Redes (ANVIDA) | Grupo de Investigación en Tecnologías Inteligentes para el Aprendizaje (Smart Learning)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Palabras clave: Graph neural networks | Deep learning | Data analysis | Explainability | Traffic flow
Fecha de publicación: 16-jun-2023
Editor: Elsevier
Cita bibliográfica: Information Sciences. 2023, 645: 119320. https://doi.org/10.1016/j.ins.2023.119320
Resumen: In recent years, several new Artificial Intelligence methods have been developed to make models more explainable and interpretable. The techniques essentially deal with the implementation of transparency and traceability of black box machine learning methods. Black box refers to the inability to explain why the model turns the input into the output, which may be problematic in some fields. To overcome this problem, our approach provides a comprehensive combination of predictive and explainability techniques. Firstly, we compared statistical regression, classic machine learning and deep learning models, reaching the conclusion that models based on deep learning exhibit greater accuracy. Of the great variety of deep learning models, the best predictive model in spatio-temporal traffic datasets was found to be the Adaptive Graph Convolutional Recurrent Network. Regarding the explainability technique, GraphMask shows a notably higher fidelity metric than other methods. The integration of both techniques was tested by means of experimental results, concluding that our approach improves deep learning model accuracy, making such models more transparent and interpretable. It allows us to discard up to 95% of the nodes used, facilitating an analysis of its behavior and thus improving the understanding of the model.
URI: http://hdl.handle.net/10045/135268
ISSN: 0020-0255 (Print) | 1872-6291 (Online)
DOI: 10.1016/j.ins.2023.119320
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.ins.2023.119320
Aparece en las colecciones:INV - Smart Learning - Artículos de Revistas
INV - ANVIDA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGarcia-Siguenza_etal_2023_InformatSci.pdf6,25 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons