Optical music recognition for homophonic scores with neural networks and synthetic music generation

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/134683
Información del item - Informació de l'item - Item information
Title: Optical music recognition for homophonic scores with neural networks and synthetic music generation
Authors: Alfaro-Contreras, María | Iñesta, José M. | Calvo-Zaragoza, Jorge
Research Group/s: Reconocimiento de Formas e Inteligencia Artificial
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos | Universidad de Alicante. Instituto Universitario de Investigación Informática
Keywords: Optical music recognition | Deep learning | End-to-end recognition | Music encoding
Issue Date: 26-May-2023
Publisher: Springer Nature
Citation: International Journal of Multimedia Information Retrieval. 2023, 12:12. https://doi.org/10.1007/s13735-023-00278-5
Abstract: The recognition of patterns that have a time dependency is common in areas like speech recognition or natural language processing. The equivalent situation in image analysis is present in tasks like text or video recognition. Recently, Convolutional Recurrent Neural Networks (CRNN) have been broadly applied to solve these tasks in an end-to-end fashion with successful performance. However, its application to Optical Music Recognition (OMR) is not so straightforward due to the presence of different elements sharing the same horizontal position, disrupting the linear flow of the timeline. In this paper, we study the ability of the state-of-the-art CRNN approach to learn codes that represent this disruption in homophonic scores. In our experiments, we study the lower bounds in the recognition task of real scores when the models are trained with synthetic data. Two relevant conclusions are drawn: (1) Our serialized ways of encoding the music content are appropriate for CRNN-based OMR; (2) the learning process is possible with synthetic data, but there exists a glass ceiling when recognizing real sheet music.
Sponsor: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This paper is part of the I+D+i PID2020-118447RA-I00 (MultiScore) project, funded by MCIN/AEI/10.13039/501100011033. The first author is supported by grant FPU19/04957 from the Spanish Ministerio de Universidades.
URI: http://hdl.handle.net/10045/134683
ISSN: 2192-6611 (Print) | 2192-662X (Online)
DOI: 10.1007/s13735-023-00278-5
Language: eng
Type: info:eu-repo/semantics/article
Rights: © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Peer Review: si
Publisher version: https://doi.org/10.1007/s13735-023-00278-5
Appears in Collections:INV - GRFIA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailAlfaro-Contreras_etal_2023_IntJMultimedInfoRetr.pdf1,17 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons