Bare-Metal Redundant Multi-Threading on Multicore SoCs under Neutron Irradiation

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/132363
Información del item - Informació de l'item - Item information
Title: Bare-Metal Redundant Multi-Threading on Multicore SoCs under Neutron Irradiation
Authors: Serrano-Cases, Alejandro | Martínez-Álvarez, Antonio | Bastos, Rodrigo Possamai | Cuenca-Asensi, Sergio
Research Group/s: UniCAD: Grupo de investigación en CAD/CAM/CAE de la Universidad de Alicante
Center, Department or Service: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Keywords: COTS | Neutron Radiation | Triple Modular Redundancy | Redundant Multi-Threading | Single-Board-Computer | System on Chip
Issue Date: 22-Feb-2023
Publisher: IEEE
Citation: IEEE Transactions on Nuclear Science. 2023, 70(8): 1643-1651. https://doi.org/10.1109/TNS.2023.3247129
Abstract: A software technique is presented to protect commercial multi-core microprocessors against radiation-induced soft errors. Important time overheads associated with conventional software redundancy techniques limit the feasibility of advanced critical electronic systems. In our approach, redundant bare-metal threads are used, so that critical computation is distributed over the different micro-processor cores. In doing so, software redundancy can be applied to Commercial Off-The-Shelf (COTS) micro-processors without incurring high-performance penalties. The proposed technique was evaluated using a low-cost single board computer (Raspberry Pi 4) under neutron irradiation. The results showed that the Redundant Multi-Threading versions detected and recovered all the Silent Data Corruption (SDC) events, and only increased HANG sensitivity with respect to the unhardened original versions. In addition, higher Mean Work to Failure (MWTF) estimations are achieved with our bare-metal technique than with the state-of-the-art bare-metal software-based techniques that only implement temporal redundancy.
Sponsor: The research reported in this paper has been partially supported through the following projects: MultiRad (funded by Région Auvergne-Rhône-Alpes, France); IRT Nanoelec (French National Research Agency ANR-10-AIRT-05 project funded through the Program d’investissement d’avenir); UGA/LPSC/-GENESIS platform and PID2019-106455GB-C22 (funded by the Spanish Ministry of Science and Innovation).
URI: http://hdl.handle.net/10045/132363
ISSN: 0018-9499 (Print) | 1558-1578 (Online)
DOI: 10.1109/TNS.2023.3247129
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Peer Review: si
Publisher version: https://doi.org/10.1109/TNS.2023.3247129
Appears in Collections:INV - UNICAD - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailSerrano-Cases_etal_2023_IEEE-TNS_accepted.pdfAccepted Manuscript (acceso abierto)908,63 kBAdobe PDFOpen Preview
ThumbnailSerrano-Cases_etal_2023_IEEE-TNS_final.pdfVersión final (acceso restringido)3,76 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.