Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 van der Waals Heterostructures

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/125276
Información del item - Informació de l'item - Item information
Title: Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 van der Waals Heterostructures
Authors: Ramos, Maria | Marques-Moros, Francisco | Esteras, Dorye L. | Mañas-Valero, Samuel | Henríquez-Guerra, Eudomar | Gadea, Marcos | Baldoví, José J. | Canet-Ferrer, Josep | Coronado, Eugenio | Calvo, M. Reyes
Research Group/s: Física de la Materia Condensada
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Van der Waals heterostructures | Transition metal dichalcogenide monolayers | Enhanced photoluminescence | Alignment engineering | Optoelectronic tunability
Issue Date: 15-Jul-2022
Publisher: American Chemical Society
Citation: ACS Applied Materials & Interfaces. 2022, 14(29): 33482-33490. https://doi.org/10.1021/acsami.2c05464
Abstract: Single-layer semiconducting transition metal dichalcogenides (2H-TMDs) display robust excitonic photoluminescence emission, which can be improved by controlled changes to the environment and the chemical potential of the material. However, a drastic emission quench has been generally observed when TMDs are stacked in van der Waals heterostructures, which often favor the nonradiative recombination of photocarriers. Herein, we achieve an enhancement of the photoluminescence of single-layer MoS2 on top of van der Waals FePS3. The optimal energy band alignment of this heterostructure preserves light emission of MoS2 against nonradiative interlayer recombination processes and favors the charge transfer from MoS2, an n-type semiconductor, to FePS3, a p-type narrow-gap semiconductor. The strong depletion of carriers in the MoS2 layer is evidenced by a dramatic increase in the spectral weight of neutral excitons, which is strongly modulated by the thickness of the FePS3 underneath, leading to the increase of photoluminescence intensity. The present results demonstrate the potential for the rational design of van der Waals heterostructures with advanced optoelectronic properties.
Sponsor: The authors acknowledge funding from Generalitat Valenciana through grants IDIFEDER/2020/005, IDIFEDER/2018/061, PROMETEO Program and PO FEDER Program, the APOSTD/2020/249 fellowship for M.R., and support from the Plan Gen-T of Excellence for J.J.B. (CDEIGENT/ 2019/022), J.C.-F. (CIDEGENT/2018/005), and M.R.C (CideGenT2018004); from the Spanish MCINN through grants PLASTOP PID2020-119124RB-I00, 2D-HETEROS PID2020-117152RB-100, and Excellence Unit “María de Maeztu” CEX2019-000919-M; and from the European Union (ERC-2021-StG-101042680 2D-SMARTiES and ERC AdG Mol-2D 788222).
URI: http://hdl.handle.net/10045/125276
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.2c05464
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2022 The Authors. Published by American Chemical Society. Creative Commons Attribution 4.0 International License (CC BY 4.0)
Peer Review: si
Publisher version: https://doi.org/10.1021/acsami.2c05464
Appears in Collections:INV - Física de la Materia Condensada - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailRamos_etal_2022_ACSApplMaterInterfaces.pdf4,1 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons