Fast cooling and internal heating in hyperon stars

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/120627
Información del item - Informació de l'item - Item information
Title: Fast cooling and internal heating in hyperon stars
Authors: Anzuini, Filippo | Melatos, Andrew | Dehman, Clara | Viganò, Daniele | Pons, José A.
Research Group/s: Astrofísica Relativista
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Stars: evolution | Stars: interiors | Stars: magnetic field | Stars: neutron
Knowledge Area: Astronomía y Astrofísica
Issue Date: 29-Oct-2021
Publisher: Oxford University Press
Citation: Monthly Notices of the Royal Astronomical Society. 2022, 509(2): 2609-2623. https://doi.org/10.1093/mnras/stab3126
Abstract: Neutron star models with maximum mass close to 2 M⊙ reach high central densities, which may activate nucleonic and hyperon direct Urca neutrino emission. To alleviate the tension between fast theoretical cooling rates and thermal luminosity observations of moderately magnetized, isolated thermally emitting stars (with Lγ ≳ 1031 erg s−1 at t ≳ 105.3 yr), some internal heating source is required. The power supplied by the internal heater is estimated for both a phenomenological source in the inner crust and Joule heating due to magnetic field decay, assuming different superfluidity models and compositions of the outer stellar envelope. It is found that a thermal power of W(t) ≈ 1034 erg s−1 allows neutron star models to match observations of moderately magnetized, isolated stars with ages t ≳ 105.3 yr. The requisite W(t) can be supplied by Joule heating due to crust-confined initial magnetic configurations with (i) mixed poloidal–toroidal fields, with surface strength Bdip = 1013 G at the pole of the dipolar poloidal component and ∼90 per cent of the magnetic energy stored in the toroidal component; and (ii) poloidal-only configurations with Bdip = 1014 G.
Sponsor: FA is supported by the University of Melbourne through a Melbourne Research Scholarship. AM acknowledges funding from an Australian Research Council Discovery Project grant (DP170103625). DV is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant ‘IMAGINE’ No. 948582, PI DV). CD is supported by the ERC Consolidator Grant ‘MAGNESIA’ (No. 817661, PI Nanda Rea) and this work has been carried out within the framework of the doctoral program in Physics of the Universitat Autònoma de Barcelona. JAP acknowledges support by the Generalitat Valenciana (PROMETEO/2019/071), AEI grant PGC2018-095984-B-I00, and the Alexander von Humboldt Stiftung through a Humboldt Research Award.
URI: http://hdl.handle.net/10045/120627
ISSN: 0035-8711 (Print) | 1365-2966 (Online)
DOI: 10.1093/mnras/stab3126
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
Peer Review: si
Publisher version: https://doi.org/10.1093/mnras/stab3126
Appears in Collections:INV - Astrofísica Relativista - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailAnzuini_etal_2022_MNRAS.pdf1,53 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.