Fast cooling and internal heating in hyperon stars

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/120627
Información del item - Informació de l'item - Item information
Título: Fast cooling and internal heating in hyperon stars
Autor/es: Anzuini, Filippo | Melatos, Andrew | Dehman, Clara | Viganò, Daniele | Pons, José A.
Grupo/s de investigación o GITE: Astrofísica Relativista
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Stars: evolution | Stars: interiors | Stars: magnetic field | Stars: neutron
Área/s de conocimiento: Astronomía y Astrofísica
Fecha de publicación: 29-oct-2021
Editor: Oxford University Press
Cita bibliográfica: Monthly Notices of the Royal Astronomical Society. 2022, 509(2): 2609-2623. https://doi.org/10.1093/mnras/stab3126
Resumen: Neutron star models with maximum mass close to 2 M⊙ reach high central densities, which may activate nucleonic and hyperon direct Urca neutrino emission. To alleviate the tension between fast theoretical cooling rates and thermal luminosity observations of moderately magnetized, isolated thermally emitting stars (with Lγ ≳ 1031 erg s−1 at t ≳ 105.3 yr), some internal heating source is required. The power supplied by the internal heater is estimated for both a phenomenological source in the inner crust and Joule heating due to magnetic field decay, assuming different superfluidity models and compositions of the outer stellar envelope. It is found that a thermal power of W(t) ≈ 1034 erg s−1 allows neutron star models to match observations of moderately magnetized, isolated stars with ages t ≳ 105.3 yr. The requisite W(t) can be supplied by Joule heating due to crust-confined initial magnetic configurations with (i) mixed poloidal–toroidal fields, with surface strength Bdip = 1013 G at the pole of the dipolar poloidal component and ∼90 per cent of the magnetic energy stored in the toroidal component; and (ii) poloidal-only configurations with Bdip = 1014 G.
Patrocinador/es: FA is supported by the University of Melbourne through a Melbourne Research Scholarship. AM acknowledges funding from an Australian Research Council Discovery Project grant (DP170103625). DV is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant ‘IMAGINE’ No. 948582, PI DV). CD is supported by the ERC Consolidator Grant ‘MAGNESIA’ (No. 817661, PI Nanda Rea) and this work has been carried out within the framework of the doctoral program in Physics of the Universitat Autònoma de Barcelona. JAP acknowledges support by the Generalitat Valenciana (PROMETEO/2019/071), AEI grant PGC2018-095984-B-I00, and the Alexander von Humboldt Stiftung through a Humboldt Research Award.
URI: http://hdl.handle.net/10045/120627
ISSN: 0035-8711 (Print) | 1365-2966 (Online)
DOI: 10.1093/mnras/stab3126
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1093/mnras/stab3126
Aparece en las colecciones:INV - Astrofísica Relativista - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAnzuini_etal_2022_MNRAS.pdf1,53 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.