Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/118800
Información del item - Informació de l'item - Item information
Título: Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain
Autor/es: Gómez, Igor | Molina-Palacios, Sergio | Galiana-Merino, Juan José | Estrela, María J. | Caselles, Vicente
Grupo/s de investigación o GITE: Grupo de Ingeniería y Riesgo Sísmico (GIRS)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef" | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: WRF model | Noah | Noah-MP | Land surface models | Surface fluxes | Land surface–atmosphere interactions | Numerical weather prediction
Área/s de conocimiento: Física de la Tierra | Teoría de la Señal y Comunicaciones
Fecha de publicación: 15-oct-2021
Editor: MDPI
Cita bibliográfica: Gómez I, Molina S, Galiana-Merino JJ, Estrela MJ, Caselles V. Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability. 2021; 13(20):11399. https://doi.org/10.3390/su132011399
Resumen: The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes, CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.
Patrocinador/es: This research was funded by the Assistance Programmes of the University of Alicante “Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2018–2019. Alicante: Instituto de Ciencias de la Educación (ICE) de la Universidad de Alicante. Ref: [4334].” and “Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2020-21. Alicante: Instituto de Ciencias de la Educación (ICE) de la Universidad de Alicante. Ref: [5150].” as well as by Research Group VIGROB-116 (University of Alicante) and by the Spanish Ministerio de Ciencia e Innovación through the project PID2020-118797RB-I00/AEI.
URI: http://hdl.handle.net/10045/118800
ISSN: 2071-1050
DOI: 10.3390/su132011399
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/su132011399
Aparece en las colecciones:INV - GIRS - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGomez_etal_2021_Sustainability.pdf5,65 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons