Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/118800
Información del item - Informació de l'item - Item information
Title: Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain
Authors: Gómez, Igor | Molina-Palacios, Sergio | Galiana-Merino, Juan José | Estrela, María J. | Caselles, Vicente
Research Group/s: Grupo de Ingeniería y Riesgo Sísmico (GIRS)
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef" | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Keywords: WRF model | Noah | Noah-MP | Land surface models | Surface fluxes | Land surface–atmosphere interactions | Numerical weather prediction
Knowledge Area: Física de la Tierra | Teoría de la Señal y Comunicaciones
Issue Date: 15-Oct-2021
Publisher: MDPI
Citation: Gómez I, Molina S, Galiana-Merino JJ, Estrela MJ, Caselles V. Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability. 2021; 13(20):11399. https://doi.org/10.3390/su132011399
Abstract: The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes, CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.
Sponsor: This research was funded by the Assistance Programmes of the University of Alicante “Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2018–2019. Alicante: Instituto de Ciencias de la Educación (ICE) de la Universidad de Alicante. Ref: [4334].” and “Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2020-21. Alicante: Instituto de Ciencias de la Educación (ICE) de la Universidad de Alicante. Ref: [5150].” as well as by Research Group VIGROB-116 (University of Alicante) and by the Spanish Ministerio de Ciencia e Innovación through the project PID2020-118797RB-I00/AEI.
URI: http://hdl.handle.net/10045/118800
ISSN: 2071-1050
DOI: 10.3390/su132011399
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/su132011399
Appears in Collections:INV - GIRS - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailGomez_etal_2021_Sustainability.pdf5,65 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons