Cement mortar cracking under accelerated steel corrosion test: A mechanical and electrochemical model

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/117552
Información del item - Informació de l'item - Item information
Title: Cement mortar cracking under accelerated steel corrosion test: A mechanical and electrochemical model
Authors: Segovia-Eulogio, Enrique-Gonzalo | Vera Almenar, Guillem de | Miró, Marina | Ramis-Soriano, Jaime | Climent, Miguel-Ángel
Research Group/s: Grupo de Ensayo, Simulación y Modelización de Estructuras (GRESMES) | Acústica Aplicada | Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Keywords: Cracking | Non-uniform corrosion | Corrosion test | Mechanical model | Electrochemical model | Mortar
Knowledge Area: Mecánica de Medios Contínuos y Teoría de Estructuras | Ingeniería de la Construcción | Física Aplicada
Issue Date: 1-Sep-2021
Publisher: Elsevier
Citation: Journal of Electroanalytical Chemistry. 2021, 896: 115222. https://doi.org/10.1016/j.jelechem.2021.115222
Abstract: Corrosion of the embedded steel is one of the main degradation problems limiting the service life of reinforced and pre-stressed concrete structures. A model able to provide approximate predictions of the evolution of the cracking process can be useful for designing accelerated corrosion tests of reinforced cement mortar or concrete specimens. An electrochemical model has been used for describing the inner displacements and strains caused by the accumulation of steel corrosion products around the rebar during electrically accelerated corrosion tests of reinforced cement mortar specimens with simple geometries. Subsequently, a mechanical model using the XFEM-Based Crack Growth Simulation module of Ansys Software, has been implemented to describe the distribution of stresses in the cross-section of the specimens. The combined electrochemical and mechanical model has led to acceptable predictions of the time to appearance of the first surface crack and the evolution of crack width over time. This combined model, which needs only data of a few experimental parameters, and uses only readily accessible standard software, could easily be implemented with other experimental configurations. For a more realistic description of the distribution of the tensile stresses and of the whole cracking process, the model must consider the initiation of several cracks, at least eight, around the rebar perimeter. The inclusion in the model of higher number of cracks increases greatly the computation time and effort, and may lead to convergence difficulties.
Sponsor: This research was funded by the Spanish Agencia Estatal de Investigación (Grant code BIA2016-80982-R) and by the European Regional Development Fund (Grant code BIA2016-80982-R).
URI: http://hdl.handle.net/10045/117552
ISSN: 1572-6657 (Print) | 1572-6657 (Online)
DOI: 10.1016/j.jelechem.2021.115222
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.1016/j.jelechem.2021.115222
Appears in Collections:INV - GRESMES - Artículos de Revistas
INV - Acústica Aplicada - Artículos de Revistas
INV - DMCIA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailSegovia_etal_JElectroanalChem_final.pdf2,43 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.