Environmental dissolved DNA harbours meaningful biological information on microbial community structure

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/114641
Información del item - Informació de l'item - Item information
Title: Environmental dissolved DNA harbours meaningful biological information on microbial community structure
Authors: Aldeguer-Riquelme, Borja | Ramos-Barbero, María Dolores | Santos, Fernando | Anton, Josefa
Research Group/s: Ecología Microbiana Molecular
Center, Department or Service: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Keywords: eDNA | dDNA | Hypersaline | Nanohaloarchaeota | Nanohalovirus | Haloquadratum | Halovirus
Knowledge Area: Microbiología
Issue Date: 5-Apr-2021
Publisher: Society for Applied Microbiology | John Wiley & Sons
Citation: Environmental Microbiology. 2021, 23(5): 2669-2682. https://doi.org/10.1111/1462-2920.15510
Abstract: Extracellular DNA (eDNA) comprises all the DNA molecules outside cells. This component of microbial ecosystems may serve as a source of nutrients and genetic information. Hypersaline environments harbour one of the highest concentrations of eDNA reported for natural systems, which has been attributed to the physicochemical preservative effect of salts and to high viral abundance. Here, we compared centrifugation and filtration protocols for the extraction of dissolved DNA (dDNA, as opposed to eDNA that also includes DNA from free viral particles) from a solar saltern crystallizer pond (CR30) water sample. The crystallizer dDNA fraction has been characterized, for the first time, and compared with cellular and viral metagenomes from the same location. High‐speed centrifugation affected CR30 dDNA concentration and composition due to cell lysis, highlighting that protocol optimization should be the first step in dDNA studies. Crystallizer dDNA, which accounted for lower concentrations than those previously reported for hypersaline anoxic sediments, had a mixed viral and cellular origin, was enriched in archaeal DNA and had a distinctive taxonomic composition compared to that from the cellular assemblage of the same sample. Bioinformatic analyses indicated that nanohaloarchaeal viruses could be a cause for these differences.
Sponsor: This research was supported by the Spanish Ministry of Science, Innovation and Universities grant MICROMATES (PGC2018-096956-B-C44), which was also supported with European Regional Development Fund (FEDER) funds, and by the Generalitat Valenciana grant PROMETEO/2017/129. B.A.-R. is a ACIF (Generalitat Valenciana) fellow.
URI: http://hdl.handle.net/10045/114641
ISSN: 1462-2912 (Print) | 1462-2920 (Online)
DOI: 10.1111/1462-2920.15510
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
Peer Review: si
Publisher version: https://doi.org/10.1111/1462-2920.15510
Appears in Collections:INV - EMM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailAldeguer-Riquelme_etal_2021_EnvironMicrobiol_accepted.pdfAccepted Manuscript (acceso abierto)4,14 MBAdobe PDFOpen Preview
ThumbnailAldeguer-Riquelme_etal_2021_EnvironMicrobiol_final.pdfVersión final (acceso restringido)2,4 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.