Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO2 electrocatalytic reduction to formate

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/109394
Información del item - Informació de l'item - Item information
Title: Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO2 electrocatalytic reduction to formate
Authors: Díaz-Sainz, Guillermo | Alvarez-Guerra, Manuel | Avila-Bolivar, Beatriz | Solla-Gullón, José | Montiel, Vicente | Irabien, Ángel
Research Group/s: Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: CO2 electroreduction | Formate | Bismuth electrocatalysts | Gas Diffusion Electrode (GDE) | Membrane electrode assembly (MEA) | Electrochemical filter press reactor
Knowledge Area: Química Física
Issue Date: 1-Feb-2021
Publisher: Elsevier
Citation: Chemical Engineering Journal. 2021, 405: 126965. https://doi.org/10.1016/j.cej.2020.126965
Abstract: The electrochemical conversion of CO2 is gaining increasing attention because it could be considered as an appealing strategy for making value-added products at mild conditions from CO2 captured. In this work, we report a process for the electrocatalytic reduction of CO2 to formate (HCOO−) operating in a continuous way, employing a single pass of the reactants through the electrochemical reactor and using Bi carbon supported nanoparticles in the form of a membrane electrode assembly composed by a Gas Diffusion Electrode, a current collector and a cationic exchange membrane. This contribution presents the best trade-off between HCOO− concentration, Faradaic Efficiency and energy consumption in the literature. We also show noteworthy values of energy consumption required of only 180 kWh·kmol−1 of HCOO−, lower than previous approaches, working at current densities that allow achieving formate concentration higher than 300 g·L−1 and simultaneously, a Faradaic Efficiency close to 90%. The results here displayed make the electrochemical approach closer for future implementation at the industrial scale.
Sponsor: The authors of this work would like to acknowledge to the financial support from the MINECO, through the projects CTQ2016-76231-C2-1-R and CTQ2016-76231-C2-2-R (AEI/FEDER, UE). J.S.G acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante (UTALENTO16-02).
URI: http://hdl.handle.net/10045/109394
ISSN: 1385-8947 (Print) | 1873-3212 (Online)
DOI: 10.1016/j.cej.2020.126965
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.cej.2020.126965
Appears in Collections:INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailDiaz-Sainz_etal_2021_ChemEngJ_final.pdfVersión final (acceso restringido)5,36 MBAdobe PDFOpen    Request a copy
ThumbnailDiaz-Sainz_etal_2021_ChemEngJ_accepted.pdfAccepted Manuscript (acceso abierto)1,74 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.