Rigatos, Gerasimos, Abbaszadeh, Masoud, Pomares, Jorge Flatness-based control in successive loops for electropneumatic actuators and robots IFAC Journal of Systems and Control. 2023, 25: 100222. https://doi.org/10.1016/j.ifacsc.2023.100222 URI: http://hdl.handle.net/10045/135706 DOI: 10.1016/j.ifacsc.2023.100222 ISSN: 2468-6018 Abstract: The control problem for the nonlinear dynamics of robotic and mechatronic systems with electropneumatic actuation is solved with the use of a flatness-based control approach which is implemented in successive loops. The state-space model of these systems is separated into a series of subsystems, which are connected between them in cascading loops. Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input-output linearized flat systems. In this chain of i = 1, 2, · · · ,N subsystems, the state variables of the subsequent (i + 1-th) subsystem become virtual control inputs for the preceding (i-th) subsystem, and so on. In turn, exogenous control inputs are applied to the last subsystem and are computed by tracing backwards the virtual control inputs of the preceding N −1 subsystems. The whole control method is implemented in successive loops and its global stability properties are also proven through Lyapunov stability analysis. The validity of the control method is confirmed in two case studies: (a) control of an electropneumatic actuator, (ii) control of a multi-DOF robotic manipulator with electropneumatic actuators. Keywords:Robotic systems, Mechatronic systems, Electropneumatic actuation, Nonlinear control, Differential flatness properties, Flatness-based control in successive loops, Global stability, Lyapunov analysis Elsevier info:eu-repo/semantics/article