Herrera, Daniela P., Chánique, Andrea M., Martínez Márquez, Ascensión, Bru-Martinez, Roque, Kourist, Robert, Parra, Loreto P., Schüller, Andreas Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Herrera DP, Chánique AM, Martínez-Márquez A, Bru-Martínez R, Kourist R, Parra LP, Schüller A. Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene. International Journal of Molecular Sciences. 2021; 22(9):4345. https://doi.org/10.3390/ijms22094345 URI: http://hdl.handle.net/10045/114634 DOI: 10.3390/ijms22094345 ISSN: 1661-6596 (Print) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that monomethylate resveratrol to yield pinostilbene have been described so far. Here, we report the engineering of a resveratrol OMT from Vitis vinifera (VvROMT), which has the highest catalytic efficiency in di-methylating resveratrol to yield pterostilbene. In the absence of a crystal structure, we constructed a three-dimensional protein model of VvROMT and identified four critical binding site residues by applying different in silico approaches. We performed point mutations in these positions generating W20A, F24A, F311A, and F318A variants, which greatly reduced resveratrol’s enzymatic conversion. Then, we rationally designed eight variants through comparison of the binding site residues with other stilbene OMTs. We successfully modified the native substrate selectivity of VvROMT. Variant L117F/F311W showed the highest conversion to pinostilbene, and variant L117F presented an overall increase in enzymatic activity. Our results suggest that VvROMT has potential for the tailor-made production of stilbenes. Keywords:Enzyme engineering, O-methyltransferases, Pinostilbene, Protein models, Substrate selectivity, Stilbenes MDPI info:eu-repo/semantics/article