Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/96187
Información del item - Informació de l'item - Item information
Título: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally
Autor/es: Ye, Jian‐Sheng | Bradford, Mark A. | Dacal, Marina | Maestre, Fernando T. | García-Palacios, Pablo
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Palabras clave: CO2 efflux | Global warming | Microbe | Soil carbon stock | Soil respiration
Área/s de conocimiento: Ecología
Fecha de publicación: oct-2019
Editor: John Wiley & Sons
Cita bibliográfica: Global Change Biology. 2019, 25(10): 3354-3364. doi:10.1111/gcb.14738
Resumen: The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.
Patrocinador/es: J.‐S.Y. was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0305) and the Fundamental Research Funds for the Central Universities (lzujbky‐2019‐kb36). This research was supported by the European Research Council (ERC Grant Agreements 242658 [BIOCOM] and 647038 [BIODESERT]). M. D. is supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sports (Ref. FPU‐15/00392). P.G.P. acknowledges the Spanish Ministry of Economy and Competitiveness for financial support via the Juan de la Cierva Incorporación Program (IJCI‐2014‐20058).
URI: http://hdl.handle.net/10045/96187
ISSN: 1354-1013 (Print) | 1365-2486 (Online)
DOI: 10.1111/gcb.14738
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 John Wiley & Sons Ltd
Revisión científica: si
Versión del editor: https://doi.org/10.1111/gcb.14738
Aparece en las colecciones:INV - DRYLAB - Artículos de Revistas
Personal Investigador sin Adscripción a Grupo

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Ye_etal_GlobalChangeBiol_final.pdfVersión final (acceso restringido)1,37 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Ye_etal_GlobalChangeBiol_accepted.pdfAccepted Manuscript (acceso abierto)641,71 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.