Insights from atomistic models on loop nucleation and growth in α-Fe thin films under Fe+ 100 keV irradiation

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/91681
Información del item - Informació de l'item - Item information
Título: Insights from atomistic models on loop nucleation and growth in α-Fe thin films under Fe+ 100 keV irradiation
Autor/es: Balbuena, Juan Pablo | Aliaga Gosálvez, María José | Dopico, Ignacio | Hernández-Mayoral, Mercedes | Malerba, Lorenzo | Martín Bragado, Ignacio | Caturla, Maria J.
Grupo/s de investigación o GITE: Grupo de Nanofísica | Física de la Materia Condensada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Monte Carlo simulation | Ion irradiation | Iron | Irradiation effect | In situ transmission electron microscopy
Área/s de conocimiento: Física Aplicada
Fecha de publicación: 1-ago-2019
Editor: Elsevier
Cita bibliográfica: Journal of Nuclear Materials. 2019, 521: 71-80. doi:10.1016/j.jnucmat.2019.04.030
Resumen: The question of how loops nucleate and grow in α-Fe under irradiation is addressed using object kinetic Monte Carlo with parameters from molecular dynamics and density functional theory calculations. Two models are considered for the formation of <100> loops, both based on recent atomistic simulations. In one model <100> loops are formed by the interaction between ½<111> loops. In a second model small interstitial clusters, nucleated in the collision cascade, can grow as <100> or ½<111> loops. Comparing results from the calculations to experimental measurements of loop densities, ratios and sizes produced by Fe+ 100 keV irradiation of UHP Fe thin films at room temperature, the validity of the models is assessed. For these experimental conditions, the reaction model does not seem to be very efficient in the production of <100> loops due to the fast recombination of ½<111> loops to surfaces. Therefore, in our thin film simulations (at very low carbon concentrations) most <100> loops are a result of the nucleation model. In bulk simulations this effect could change since the probability of interactions between ½<111> loops would increase. Moreover, simulations show that total visible cluster concentration depends strongly on sample thickness and carbon content, while crystal orientation does not seem to have a significant role. Finally, the ratio of <100> to ½<111> visible clusters changes with increased carbon concentration.
Patrocinador/es: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The research leading to these results is partly funded by the European Atomic Energy Communitys (Euratom) Seventh Framework Programme FP7/2007e2013 under grant agreement No. 604862 (MatISSE project) and in the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials.
URI: http://hdl.handle.net/10045/91681
ISSN: 0022-3115 (Print) | 1873-4820 (Online)
DOI: 10.1016/j.jnucmat.2019.04.030
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Published by Elsevier B.V.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jnucmat.2019.04.030
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Grupo de Nanofísica - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Balbuena_etal_JNuclearMat_final.pdfVersión final (acceso restringido)2,58 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Balbuena_etal_JNuclearMat_accepted.pdfAccepted Manuscript (acceso abierto)2,34 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.