Plasmon-driven catalysis of adsorbed p-nitroaniline (PNA) by surface-enhanced Raman scattering (SERS): Platinum versus silver

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/91651
Información del item - Informació de l'item - Item information
Title: Plasmon-driven catalysis of adsorbed p-nitroaniline (PNA) by surface-enhanced Raman scattering (SERS): Platinum versus silver
Authors: Vidal-Iglesias, Francisco J. | Juan Juan, Jerónimo | Such-Basañez, Ion | Solla-Gullón, José | Pérez Martínez, Juan Manuel
Research Group/s: Electroquímica Aplicada y Electrocatálisis | Materiales Carbonosos y Medio Ambiente | Grupo de Espectroelectroquímica y Modelización (GEM)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: SERS | P-nitroaniline | Plasmon-driven catalysis | Pt nanoparticles | Ag nanoparticles
Knowledge Area: Química Física
Issue Date: Sep-2019
Publisher: Elsevier
Citation: Surface Science. 2019, 687: 17-24. doi:10.1016/j.susc.2019.04.007
Abstract: The adsorption of p-nitroaniline (PNA) on Pt nanoparticles, both in the absence (in aqueous solution) and in the presence of oxygen (in air environment), is studied by SERS for the first time. Differences between the plasmon-driven catalysis of adsorbed PNA on Pt and Ag nanoparticles have been found. In the presence of oxygen, the oxidative coupling of the NH2 group in PNA to yield dinitroazobenzene (DNAB) occurs on both Pt and Ag nanoparticles. However, in the absence of oxygen, PNA behaves clearly differently on Ag than on Pt. Thus, whereas diaminoazobenzene (DAAB) is catalytically produced on Ag nanoparticles by plasmon-driven reduction reactions of the NO2 group, on Pt nanoparticles this reaction does not fully take place as indicated by the presence of NO2 groups on the surface of the nanoparticles. A mechanism for this distinctive behavior is tentatively proposed in which water acts as a sacrificial agent, being reduced to hydrogen by hot electrons coming from the Pt surface, while the hot holes on Pt are proposed to attach to an occupied molecular state of adsorbed PNA. The overall photocatalytic reaction of adsorbed PNA on Pt nanoparticles, in an O2 free solution, would actually be consistent with a dehydrogenation process of water.
Sponsor: This work was conducted under the framework of the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), project CTQ2016-76231-C2-2-R (AEI/FEDER, UE). JSG acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante (UATALENTO16-02).
URI: http://hdl.handle.net/10045/91651
ISSN: 0039-6028 (Print) | 1879-2758 (Online)
DOI: 10.1016/j.susc.2019.04.007
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2019 Published by Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.susc.2019.04.007
Appears in Collections:INV - MCMA - Artículos de Revistas
INV - GEM - Artículos de Revistas
INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Vidal-Iglesias_etal_SurfaceSci_final.pdfVersión final (acceso restringido)1,18 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Vidal-Iglesias_etal_SurfaceSci_accepted.pdfAccepted Manuscript (acceso abierto)1,8 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.