Numerical modelling of finite periodic arrays of acoustic resonators using an efficient 3D BEM model

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/90208
Información del item - Informació de l'item - Item information
Título: Numerical modelling of finite periodic arrays of acoustic resonators using an efficient 3D BEM model
Autor/es: Amado-Mendes, Paulo | Godinho, Luís | Carbajo, Jesús | Ramis-Soriano, Jaime
Grupo/s de investigación o GITE: Acústica Aplicada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Periodic 3D Boundary Element Method | Adaptive Cross Approximation | Acoustic attenuation | Finite periodic structures with acoustic resonators
Área/s de conocimiento: Física Aplicada
Fecha de publicación: may-2019
Editor: Elsevier
Cita bibliográfica: Engineering Analysis with Boundary Elements. 2019, 102: 73-86. doi:10.1016/j.enganabound.2019.02.012
Resumen: Noise abatement provided by acoustic metamaterials is one of the peculiar features presented by these remarkable materials. In fact, the use of local resonant elements and their periodic distribution in the form of so-called sonic crystal arrangements have demonstrated to enhance those attenuation properties. In this work, the authors present an efficient three-dimensional (3D) numerical model based on the Boundary Element Method (BEM) to analyse the acoustic behaviour in the frequency domain of finite periodic arrays of acoustic resonators. Unlike most analytical methods, the proposed model captures the finite features of these systems and their associated effects. Furthermore, usual numerical tools such as the Finite Element Method (FEM) may become impractical because the detailed and complex geometry of these devices would lead to very large discretized spatial domains. Instead, in the proposed model, only the resonators have to be discretized. Actually, an efficient strategy has been devised to adequately take into account the periodicity of the finite array of resonators, resulting in significant savings of computational resources. Additionally, the Adaptive Cross Approximation (ACA) technique is used, further reducing the computational requirements since it is based on hierarchical representation of matrices and allows a very efficient storage of the system matrix.
Patrocinador/es: This work has been framed within POCI-01-0247-FEDER-017759 (SmartCore) and POCI-01-0247-FEDER-033691 (HLS - Hybrid Log Shield) Projects, funded by the COMPETE 2020, Portugal 2020 and FEDER funds. This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007633 and through the Regional Operational Programme CENTRO2020 within the scope of the project CENTRO-01-0145-FEDER-000006. This work was also developed in the scope of COST (European Cooperation in Science and Technology) through the COST Action CA15125 – DENORMS: “Designs for Noise Reducing Materials and Structures” and the EU funding support is here acknowledged.
URI: http://hdl.handle.net/10045/90208
ISSN: 0955-7997 (Print) | 1873-197X (Online)
DOI: 10.1016/j.enganabound.2019.02.012
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.enganabound.2019.02.012
Aparece en las colecciones:INV - Acústica Aplicada - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Amado-Mendes_etal_EngAnalBoundElem_final.pdfVersión final (acceso restringido)3,73 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.