Automatic semantic maps generation from lexical annotations

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/89848
Información del item - Informació de l'item - Item information
Título: Automatic semantic maps generation from lexical annotations
Autor/es: Rangel, José Carlos | Cazorla, Miguel | García-Varea, Ismael | Romero-González, Cristina | Martínez-Gómez, Jesús
Grupo/s de investigación o GITE: Robótica y Visión Tridimensional (RoViT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Palabras clave: Semantic map | Lexical annotations | 3D registration | RGB-D data | Deep learning
Área/s de conocimiento: Ciencia de la Computación e Inteligencia Artificial
Fecha de publicación: mar-2019
Editor: Springer US
Cita bibliográfica: Autonomous Robots. 2019, 43(3): 697-712. doi:10.1007/s10514-018-9723-8
Resumen: The generation of semantic environment representations is still an open problem in robotics. Most of the current proposals are based on metric representations, and incorporate semantic information in a supervised fashion. The purpose of the robot is key in the generation of these representations, which has traditionally reduced the inter-usability of the maps created for different applications. We propose the use of information provided by lexical annotations to generate general-purpose semantic maps from RGB-D images. We exploit the availability of deep learning models suitable for describing any input image by means of lexical labels. Lexical annotations are more appropriate for computing the semantic similarity between images than the state-of-the-art visual descriptors. From these annotations, we perform a bottom-up clustering approach that associates each image with a different category. The use of RGB-D images allows the robot pose associated with each acquisition to be obtained, thus complementing the semantic with the metric information.
Patrocinador/es: This work has been partially sponsored by the Spanish Ministry of Economy and Competitiveness under grant number TIN2015-65686-C5-3-R, and by the Regional Council of Education, Culture and Sports of Castilla-La Mancha under grant number PPII-2014-015-P. It has been also supported by the Spanish Government DPI2016-76515-R Grant, supported with Feder funds. Cristina Romero-González is funded by the MECD Grant FPU12/04387. José Carlos Rangel is funded by the IFARHU Grant 8-2014-166 of the Republic of Panamá.
URI: http://hdl.handle.net/10045/89848
ISSN: 0929-5593 (Print) | 1573-7527 (Online)
DOI: 10.1007/s10514-018-9723-8
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © Springer Science+Business Media, LLC, part of Springer Nature 2018
Revisión científica: si
Versión del editor: https://doi.org/10.1007/s10514-018-9723-8
Aparece en las colecciones:INV - RoViT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Rangel_etal_AutonomousRobots_final.pdfVersión final (acceso restringido)3,13 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.