In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/87254
Información del item - Informació de l'item - Item information
Título: In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces
Autor/es: Dong, Jin-Chao | Zhang, Xia-Guang | Briega-Martos, Valentín | Jin, Xi | Yang, Ji | Chen, Shu | Yang, Zhi-Lin | Wu, De-Yin | Feliu, Juan M. | Williams, Christopher T. | Tian, Zhong-Qun | Li, Jian-Feng
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrocatalysis | In situ Raman spectroscopy | Oxygen reduction reaction | Platinum single-crystal surfaces
Área/s de conocimiento: Química Física
Fecha de publicación: 3-dic-2018
Editor: Springer Nature
Cita bibliográfica: Nature Energy. 2019, 4: 60-67. doi:10.1038/s41560-018-0292-z
Resumen: Developing an understanding of structure–activity relationships and reaction mechanisms of catalytic processes is critical to the successful design of highly efficient catalysts. As a fundamental reaction in fuel cells, elucidation of the oxygen reduction reaction (ORR) mechanism at Pt(hkl) surfaces has remained a significant challenge for researchers. Here, we employ in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation techniques to examine the ORR process at Pt(hkl) surfaces. Direct spectroscopic evidence for ORR intermediates indicates that, under acidic conditions, the pathway of ORR at Pt(111) occurs through the formation of HO2*, whereas at Pt(110) and Pt(100) it occurs via the generation of OH*. However, we propose that the pathway of the ORR under alkaline conditions at Pt(hkl) surfaces mainly occurs through the formation of O2−. Notably, these results demonstrate that the SERS technique offers an effective and reliable way for real-time investigation of catalytic processes at atomically flat surfaces not normally amenable to study with Raman spectroscopy.
Patrocinador/es: This work was supported by the NSFC (21522508, 21427813, 21521004, 21533006, 21621091 and 21775127), “111” Project (B17027), Natural Science Foundation of Guangdong Province (2016A030308012), the Fundamental Research Funds for the Central Universities (20720180037), and the Thousand Youth Talents Plan of China. Support from MINECO and Generalitat Valenciana (Spain), through projects CTQ2016–76221-P (AEI/FEDER, UE) and PROMETEOII/2014/013, respectively, is greatly acknowledged. V.B.-M. acknowledges MINECO for the award of a pre-doctoral grant (BES-2014–068176, project CTQ2013–44803-P).
URI: http://hdl.handle.net/10045/87254
ISSN: 2058-7546
DOI: 10.1038/s41560-018-0292-z
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s), under exclusive licence to Springer Nature Limited 2018
Revisión científica: si
Versión del editor: https://doi.org/10.1038/s41560-018-0292-z
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Dong_etal_NatureEnergy_final.pdfVersión final (acceso restringido)2,09 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Dong_etal_NatureEnergy_revised.pdfVersión revisada (acceso abierto)8,44 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.