A sol–gel monolithic metal–organic framework with enhanced methane uptake

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/84032
Información del item - Informació de l'item - Item information
Título: A sol–gel monolithic metal–organic framework with enhanced methane uptake
Autor/es: Tian, Tian | Zeng, Zhixin | Vulpe, Diana | Casco, Mirian Elizabeth | Divitini, Giorgio | Midgley, Paul A. | Silvestre-Albero, Joaquín | Tan, Jin-Chong | Moghadam, Peyman Z. | Fairen-Jimenez, David
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Porous monolithic | Metal-organic framework | Methane uptake
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: feb-2018
Editor: Macmillan Publishers
Cita bibliográfica: Nature Materials. 2018, 17: 174-179. doi:10.1038/NMAT5050
Resumen: A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal–organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm−3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.
Patrocinador/es: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, and the EPSRC IAA Partnership Development Award (RG/75759). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. J.C.T. would like to acknowledge the EPSRC (EP/N014960/1) for research funding. G.D. and P.A.M. acknowledge financial support from the EU under grant numbers 312483 ESTEEM2 and 291522 3DIMAGE. J.S.A. acknowledges financial support from MINECO (MAT2016-80285-p), H2020 (MSCA-RISE-2016/Nanomed Project) and GV (PROMETEOII/2014/004).
URI: http://hdl.handle.net/10045/84032
ISSN: 1476-1122 (Print) | 1476-4660 (Online)
DOI: 10.1038/NMAT5050
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2017 Macmillan Publishers Limited, part of Springer Nature
Revisión científica: si
Versión del editor: https://doi.org/10.1038/NMAT5050
Aparece en las colecciones:INV - LMA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Tian_etal_NatureMat_final.pdfVersión final (acceso restringido)785,05 kBAdobe PDFAbrir    Solicitar una copia
Thumbnail2018_Tian_etal_NatureMat_accepted.pdfAccepted Manuscript (acceso abierto)2,9 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.