A High-Volumetric-Capacity Cathode Based on Interconnected Close-Packed N-Doped Porous Carbon Nanospheres for Long-Life Lithium–Sulfur Batteries

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/71553
Información del item - Informació de l'item - Item information
Title: A High-Volumetric-Capacity Cathode Based on Interconnected Close-Packed N-Doped Porous Carbon Nanospheres for Long-Life Lithium–Sulfur Batteries
Authors: Hu, Cheng | Kirk, Caroline | Cai, Qiong | Cuadrado-Collados, Carlos | Silvestre-Albero, Joaquín | Rodríguez Reinoso, Francisco | Biggs, Mark J.
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Close packed | High volumetric capacity | Interconnected carbon nanospheres | Li–S batteries | Monodisperse
Knowledge Area: Química Inorgánica
Issue Date: 22-Nov-2017
Publisher: Wiley-VCH Verlag GmbH & Co. KGaA
Citation: Advanced Energy Materials. 2017, 7(22): 1701082. doi:10.1002/aenm.201701082
Abstract: This study reports a Li–S battery cathode of high volumetric capacity enabled by novel micro- and mesostructuring. The cathode is based on monodisperse highly porous carbon nanospheres derived from a facile template- and surfactant-free method. At the mesoscale, the nanospheres structure into interconnected close-packed clusters of a few microns in extent, thus facilitating the fabrication of dense crack-free high areal sulfur loading (5 mg cm−2) cathodes with high electrical conductivity and low cathode impedance. A combination of the nitrogen doping (5 wt%), high porosity (2.3 cm3 g−1), and surface area (2900 m2 g−1) at the microscale enables high sulfur immobilization and utilization. The cathode delivers among the best reported volumetric capacity to date, above typical Li-ion areal capacity at 0.2 C over 200 cycles and low capacity fading of 0.1% per cycle at 0.5 C over 500 cycles. The compact cathode structure also ensures a low electrolyte requirement (6 µL mg−1), which aids a low overall cell weight, and further, among the best gravimetric capacities published to date as well.
Sponsor: C.H. acknowledges a Postdoctoral Fellowship provided by Loughborough University. Dr. Zhaoxia Zhou at Loughborough Materials Characterization Centre, Loughborough University is gratefully acknowledged for assistance with the TEM work. Q.C. gratefully acknowledges the support by the EPSRC program EP/M027066/1.
URI: http://hdl.handle.net/10045/71553
ISSN: 1614-6832 (Print) | 1614-6840 (Online)
DOI: 10.1002/aenm.201701082
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Peer Review: si
Publisher version: http://dx.doi.org/10.1002/aenm.201701082
Appears in Collections:INV - LMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Hu_etal_AdvEnergyMater_final.pdfVersión final (acceso restringido)3,41 MBAdobe PDFOpen    Request a copy
Thumbnail2017_Hu_etal_AdvEnergyMater_revised.pdfVersión revisada (acceso abierto)2,87 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.