Anomalous magnetism in hydrogenated graphene

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/67995
Información del item - Informació de l'item - Item information
Título: Anomalous magnetism in hydrogenated graphene
Autor/es: García-Martínez, N.A. | Lado, Jose L. | Jacob, David | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Magnetism | Hydrogenated graphene
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 5-jul-2017
Editor: American Physical Society
Cita bibliográfica: Physical Review B. 2017, 96: 024403. doi:10.1103/PhysRevB.96.024403
Resumen: We revisit the problem of local moment formation in graphene due to chemisorption of individual atomic hydrogen or other analogous sp3 covalent functionalizations. We describe graphene with the single-orbital Hubbard model, so that the H chemisorption is equivalent to a vacancy in the honeycomb lattice. To circumvent artifacts related to periodic unit cells, we use either huge simulation cells of up to 8×105 sites, or an embedding scheme that allows the modeling of a single vacancy in an otherwise pristine infinite honeycomb lattice. We find three results that stress the anomalous nature of the magnetic moment (m) in this system. First, in the noninteracting (U=0) zero-temperature (T=0) case, the m(B) is a continuous smooth curve with divergent susceptibility, different from the stepwise constant function found for single unpaired spins in a gapped system. Second, for U=0 and T>0, the linear susceptibility follows a power law ∝T−α with an exponent of α=0.77 different from the conventional Curie law. For U>0, in the mean-field approximation, the integrated moment is smaller than m=1μB, in contrast with results using periodic unit cells. These three results highlight the fact that the magnetic response of the local moment induced by sp3 functionalizations in graphene is different from that of local moments in gapped systems, for which the magnetic moment is quantized and follows a Curie law, and from Pauli paramagnetism in conductors, for which linear susceptibility can be defined at T=0.
Patrocinador/es: The authors acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH. J.F.-R. acknowledges financial supported by MEC-Spain (GrantsNo. FIS2013-47328-C2-2-P and No. MAT2016-78625-C2) and Generalitat Valenciana (Grant No. ACOMP/2010/070), Prometeo, by European Regional Development Fund (ERDF) funds through the Portuguese Operational Program for Competitiveness and Internationalization COMPETE 2020, and National Funds through FCT, under the Project No. PTDC/FIS-NAN/4662/2014 (016656) [Portuguese Foundation for Science and Technology]. This work has been financially supported in part by FEDER funds.
URI: http://hdl.handle.net/10045/67995
ISSN: 1098-0121 (Print) | 1550-235X (Online)
DOI: 10.1103/PhysRevB.96.024403
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: ©2017 American Physical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.96.024403
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Garcia-Martinez_etal_PhysRevB.pdf904 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.