Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/66527
Información del item - Informació de l'item - Item information
Título: Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate
Autor/es: Castillo, Andrés del | Alvarez-Guerra, Manuel | Solla-Gullón, José | Sáez, Alfonso | Montiel, Vicente | Irabien, Ángel
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Carbon dioxide | Tin nanoparticles | Formate | Electroreduction | Gas diffusion electrodes
Área/s de conocimiento: Química Física
Fecha de publicación: mar-2017
Editor: Elsevier
Cita bibliográfica: Journal of CO2 Utilization. 2017, 18: 222-228. doi:10.1016/j.jcou.2017.01.021
Resumen: Electrochemical reduction of CO2 has been pointed out as an interesting strategy to convert CO2 into useful chemicals. In addition, coupling CO2 electroreduction with renewable energies would allow storing electricity from intermittent renewable sources such as wind or solar power. In this work, an easy and fast method is adapted for the synthesis of pure and carbon supported Sn nanoparticles. The resulting nanoparticles have been characterized by transmission electron microscopy and their electrocatalytic properties towards CO2 reduction evaluated by cyclic voltammetry. Carbon supported Sn nanoparticles have been subsequently used to prepare Gas Diffusion Electrodes (Sn/C-GDEs). The electrodes have been characterized by scanning electron microscopy and also by cyclic voltammetry. Finally, the electrodes were tested on a continuous and single pass CO2 electroreduction filter-press type cell system in aqueous solution, to obtain formate at ambient pressure and temperature. These Sn/C-GDEs allow working at high current densities with low catholyte flow. Thus, for instance, at 150 mA cm−2, a 70% Faradaic Efficiency (FE) was obtained with a formate concentration of 2.5 g L−1. Interestingly, by increasing the current density to 200 mA cm−2 and decreasing the flow rate, a concentration over 16 g L−1 was reached. Despite the high concentrations obtained, further research is still required to keep high FE operating at high current densities.
Patrocinador/es: This work was conducted under the framework of the Spanish Ministry of Economy and Competitiveness projects CTQ2013-48280-C3-1-R and CTQ2013-48280-C3-3-R. Andrés Del Castillo also acknowledges the research grant from University of Cantabria, co-financed by the Regional Government of Cantabria.
URI: http://hdl.handle.net/10045/66527
ISSN: 2212-9820 (Print) | 2212-9839 (Online)
DOI: 10.1016/j.jcou.2017.01.021
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2017 Elsevier Ltd.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.jcou.2017.01.021
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Del-Castillo_etal_JCO2Util_final.pdfVersión final (acceso restringido)2,02 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.