Electronic transport in gadolinium atomic-size contacts

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/62887
Información del item - Informació de l'item - Item information
Título: Electronic transport in gadolinium atomic-size contacts
Autor/es: Olivera, Bernat | Salgado, Carlos | Lado, Jose L. | Karimi, A. | Henkel, V. | Scheer, E. | Fernández-Rossier, Joaquín | Palacios Burgos, Juan José | Untiedt, Carlos
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Nanoscale contacts | Density functional theory, local density approximation, gradient and other corrections | Spin polarized transport in metals
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 8-feb-2017
Editor: American Physical Society
Cita bibliográfica: Phys. Rev. B 95, 075409. doi:10.1103/PhysRevB.95.075409
Resumen: We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2e2h. Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s, p, and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.
Patrocinador/es: B.O., C.S., J.F.R., J.J.P., and C.U. acknowledge financial support by MEC-Spain (Grant No. FIS2013-47328-C2 and MAT2016-78625-C2) and the Generalitat Valenciana under Grant No. PROMETEO/2012/011. C.S. and J.J.P. acknowledge the EU structural funds and the Comunidad de Madrid under NANOFRONTMAG-CM program Grant No. S2013/MIT-2850. J.L.L. and J.F.R. acknowledge Marie Curie ITN SPINOGRAPH FP7 under REA Grant Agreement No. 607904-13. B.O. acknowledges financial support by MEC Spain (Grant No. FIS2010-21883-C02-01) under brief stays abroad scholarship.
URI: http://hdl.handle.net/10045/62887
ISSN: 1098-0121 (Print) | 1550-235X (Online)
DOI: 10.1103/PhysRevB.95.075409
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: ©2017 American Physical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.95.075409
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Olivera_etal_PhysRevB.pdf1,81 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.