An Acid-Base Electrochemical Flow Battery as energy storage system

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/62744
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorElectroquímica Aplicada y Electrocatálisises_ES
dc.contributor.authorSáez, Alfonso-
dc.contributor.authorMontiel, Vicente-
dc.contributor.authorAldaz Riera, Antonio-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Electroquímicaes_ES
dc.date.accessioned2017-02-08T12:26:03Z-
dc.date.available2017-02-08T12:26:03Z-
dc.date.issued2016-10-26-
dc.identifier.citationInternational Journal of Hydrogen Energy. 2016, 41(40): 17801-17806. doi:10.1016/j.ijhydene.2016.08.141es_ES
dc.identifier.issn0360-3199 (Print)-
dc.identifier.issn1879-3487 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/62744-
dc.description.abstractIn this paper, we present a new Acid-Base Electrochemical Flow Battery (ABEFB). This system is composed of acidic and alkaline solutions, both with a high supporting electrolyte concentration. These solutions are separated by a proton exchange membrane, using hydrogen as both a reactant and a product. Under this configuration, neutralization energy is used as electromotive force. Thus, in the charging process, hydrogen is oxidized to form hydronium ions (hydrogen oxidation reaction –HOR-) (positive electrode) that acidifies positive electrolyte or posilyte, while hydrogen is formed from water (hydrogen evolution reaction –HER-) (negative electrode) that basifies negative electrolyte or negalyte. On the other hand, during the discharging process, both electrolytes are neutralized through hydrogen oxidation and hydrogen evolution reactions. A platinised titanium electrode is chosen for HER and a platinum-catalysed gas diffusion electrode is used for HOR. This proof of concept has been verified for several charge capacities obtaining a maximum power density of 20 mW cm−2 at 49 mA cm−2. In this sense, faradaic efficiency close to 95% and energy efficiency of 55% are also obtained. Finally, the reuse of produced hydrogen is an interesting aspect to be considered.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd.es_ES
dc.subjectHydrogenes_ES
dc.subjectAcides_ES
dc.subjectBasees_ES
dc.subjectEnergy storage systemes_ES
dc.subjectRedox flow batteryes_ES
dc.subject.otherQuímica Físicaes_ES
dc.titleAn Acid-Base Electrochemical Flow Battery as energy storage systemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.ijhydene.2016.08.141-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.ijhydene.2016.08.141es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Saez_etal_IJHE_final.pdfVersión final (acceso restringido)1,12 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2016_Saez_etal_IJHE_preprint.pdfPreprint (acceso abierto)1,47 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.