Methane hydrate formation in confined nanospace can surpass nature

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/57852
Información del item - Informació de l'item - Item information
Título: Methane hydrate formation in confined nanospace can surpass nature
Autor/es: Casco, Mirian Elizabeth | Silvestre-Albero, Joaquín | Ramírez-Cuesta, Anibal J. | Rey, Fernando | Jordá, José L. | Bansode, Atul | Urakawa, Atsushi | Peral, Inma | Martinez-Escandell, Manuel | Kaneko, Katsumi | Rodríguez Reinoso, Francisco
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Methane hydrate formation | Confined nanospace
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 2-mar-2015
Editor: Macmillan Publishers
Cita bibliográfica: Nature Communications. 2015, 6: 6432. doi:10.1038/ncomms7432
Resumen: Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 °C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation).
Patrocinador/es: We acknowledge UK Science and Technlology Facilities Council for the provision of beam time on the TOSCA spectrometer (Projects RB1410624 and RB122099) and financial support from the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’ Programme (NMI3-II Grant number 283883). J.S.-A. and F.R. acknowledges the financial support from MINECO: Strategic Japanese-Spanish Cooperation Program (PLE2009-0052), Concert Project-NASEMS (PCIN-2013-057) and Generalitat Valenciana (PROMETEO/2009/002). F.R. and J.L.J. thank the financial support from MINECO (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and SEV-2012-0267). K.K. thanks Grant-in-Aid for Scientific Research (A) (2424-1038), Japan. A.B. and A.U. thank the financial support from MINECO (SEV-2013-0319). J.L.J. and I.P. thank synchrotron ALBA for beamtime availability.
URI: http://hdl.handle.net/10045/57852
ISSN: 2041-1723
DOI: 10.1038/ncomms7432
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1038/ncomms7432
Aparece en las colecciones:INV - LMA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2015_Casco_etal_NatureComm.pdf755,9 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons