Large spin splitting in the conduction band of transition metal dichalcogenide monolayers

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/54246
Información del item - Informació de l'item - Item information
Título: Large spin splitting in the conduction band of transition metal dichalcogenide monolayers
Autor/es: Kósmider, K. | González, Jhon W. | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Condensed Matter Physics | 2D Materials
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 23-dic-2013
Editor: American Physical Society
Cita bibliográfica: Physical Review B. 2013, 88: 245436. doi:10.1103/PhysRevB.88.245436
Resumen: We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.
Patrocinador/es: JFR acknowledges financial supported by MEC-Spain (FIS2010-21883-C02-01) and Generalitat Valenciana (ACOMP/2010/070), Prometeo. This work has been financially supported in part by FEDER funds. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.
URI: http://hdl.handle.net/10045/54246
ISSN: 0163-1829 (Print) | 1095-3795 (Online)
DOI: 10.1103/PhysRevB.88.245436
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2013 American Physical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.88.245436
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailKK-JW-PhysRevB.88.245436.pdf1,64 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.