Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/53434
Información del item - Informació de l'item - Item information
Título: Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations
Autor/es: Fernández, M.A. | Sabater, Carlos | Dednam, Wynand | Palacios Burgos, Juan José | Calvo, M. Reyes | Untiedt, Carlos | Caturla, Maria J.
Grupo/s de investigación o GITE: Grupo de Nanofísica | Física de la Materia Condensada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Dynamic bonding | Metallic nanocontacts
Área/s de conocimiento: Física de la Materia Condensada | Física Aplicada
Fecha de publicación: 26-feb-2016
Editor: American Physical Society
Cita bibliográfica: Phys. Rev. B 93, 085437. doi:10.1103/PhysRevB.93.085437
Resumen: The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as “jump to contact” (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.
Patrocinador/es: W. Dednam acknowledges support from the National Research Foundation of South Africa through the Scarce Skills Masters scholarship funding programme (Grant Unique Number 92138). This work is supported by the Generalitat Valenciana through Grant Reference PROMETEO2012/011 and MINECO under Grant No. FIS2013-47328, by European Union structural funds and the Comunidad de Madrid Programs S2013/MIT-3007 and P2013/MIT-2850. This work is also part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO).
URI: http://hdl.handle.net/10045/53434
ISSN: 1098-0121 (Print) | 1550-235X (Online)
DOI: 10.1103/PhysRevB.93.085437
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: ©2016 American Physical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.93.085437
Aparece en las colecciones:INV - Física de la Materia Condensada - Artículos de Revistas
INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Fernandez_etal_PhysRevB.pdf2,49 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.