Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/53253
Información del item - Informació de l'item - Item information
Título: Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films
Autor/es: Aliaga Gosálvez, María José | Schäublin, Robin | Löffler, Jörg F. | Caturla, Maria J.
Grupo/s de investigación o GITE: Física de la Materia Condensada | Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Molecular dynamics simulations | Ion irradiation | In situ transmission electron microscopy | Defects | Microstructure
Área/s de conocimiento: Física Aplicada
Fecha de publicación: dic-2015
Editor: Elsevier
Cita bibliográfica: Acta Materialia. 2015, 101: 22-30. doi:10.1016/j.actamat.2015.08.063
Resumen: Transmission electron microscopy (TEM) in situ ion implantation is a convenient way to study radiation damage, but it is biased by the proximity of the free surfaces of the electron transparent thin sample. In this work this bias was investigated by performing irradiation of Fe in thin foil and bulk form with ions of energies between 50 keV and 100 keV using molecular dynamics simulations. The damage resulting from the subsequent displacement cascades differs significantly between the two sample geometries. The most remarkable difference is in the resulting 〈1 0 0〉 vacancy loops. Both their size and frequency are much greater in thin films, with loops reaching 4 nm in size. This is due to an imbalance between the number of vacancies and self-interstitials produced, since the faster self-interstitials can escape to the surfaces and remain there as ad-atoms. In addition, the self-interstitial clusters are smaller for thin foils and there is a larger dispersion of the induced damage in terms of defect number, defect clustering and defect morphology. The study discusses the impact of these results on the study of radiation effects during in situ experiments.
Patrocinador/es: MJA thanks the UA for support through an institutional fellowship. The research leading to these results is partly funded by the European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007–2013 under Grant agreement No. 604862 (MatISSE project) and in the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials and the Generalitat Valenciana PROMETEO2012/011. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant agreement No. 633053.
URI: http://hdl.handle.net/10045/53253
ISSN: 1359-6454 (Print) | 1873-2453 (Online)
DOI: 10.1016/j.actamat.2015.08.063
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2015 EURATOM. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.actamat.2015.08.063
Aparece en las colecciones:INV - Física de la Materia Condensada - Artículos de Revistas
INV - Grupo de Nanofísica - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2015_Aliaga_etal_Acta-Materialia_final.pdfVersión final (acceso restringido)2,05 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2015_Aliaga_etal_Acta-Materialia_rev.pdfVersión revisada (acceso abierto)2,43 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.