Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/46086
Información del item - Informació de l'item - Item information
Título: Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides
Autor/es: Wang, Hai | Barceló Gisbert, Irene | Lana-Villarreal, Teresa | Gómez, Roberto | Bonn, Mischa | Cánovas, Enrique
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Quantum dot stoichiometry | SILAR | PbS quantum dots | Epitaxial growth | Electron transfer | THz spectroscopy | Quantum dot-sensitized solar cells
Área/s de conocimiento: Química Física
Fecha de publicación: 19-sep-2014
Editor: American Chemical Society
Cita bibliográfica: Nano Letters. 2014, 14(10): 5780-5786. doi:10.1021/nl5026634
Resumen: We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.
Patrocinador/es: This work has been financially supported by the Max Planck Society. H.W. is a recipient of a fellowship of the Graduate School Materials Science in Mainz (MAINZ) funded through the German Research Foundation in the Excellence Initiative (GSC 266). I.B. is grateful to the Materials Science Doctoral program of the Universitat d’Alacant (UA) for the award of a travel grant. The UA team acknowledges the financial support from the Spanish Ministry of Economy and Competitiveness through project MAT2012-37676 (FONDOS FEDER).
URI: http://hdl.handle.net/10045/46086
ISSN: 1530-6984 (Print) | 1530-6992 (Online)
DOI: 10.1021/nl5026634
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2014 American Chemical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1021/nl5026634
Aparece en las colecciones:INV - GFES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Wang_etal_NanoLetters_final.pdfVersión final (acceso restringido)2,69 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.