Hybrid simulation-optimization based approach for the optimal design of single-product biotechnological processes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/36556
Información del item - Informació de l'item - Item information
Título: Hybrid simulation-optimization based approach for the optimal design of single-product biotechnological processes
Autor/es: Brunet, Robert | Guillén Gosálbez, Gonzalo | Pérez Correa, J. Ricardo | Caballero, José A. | Jiménez, Laureano
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: Hybrid simulation-optimization | Mixed-integer dynamic optimization | Biotechnological processes | L-Lysine
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 10-feb-2012
Editor: Elsevier
Cita bibliográfica: Computers & Chemical Engineering. 2012, 37: 125-135. doi:10.1016/j.compchemeng.2011.07.013
Resumen: In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Patrocinador/es: Support from the Spanish Ministry of Education and Science (projects DPI2008-04099 and CTQ2009-14420-C02) and the Spanish Ministry of External Affairs (projects A/023551/09, A/031707/10 and HS2007-0006).
URI: http://hdl.handle.net/10045/36556
ISSN: 0098-1354 (Print) | 1873-4375 (Online)
DOI: 10.1016/j.compchemeng.2011.07.013
Idioma: eng
Tipo: info:eu-repo/semantics/article
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.compchemeng.2011.07.013
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2012_Brunet_etal_C&CE.pdfPreprint (acceso abierto)362,24 kBAdobe PDFAbrir Vista previa
Thumbnail2012_Brunet_etal_C&CE-final.pdfVersión final (acceso restringido)829,4 kBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.