Interference and diffraction analysis of holographic gratings using the Finite-Difference Time-Domain method

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/16172
Información del item - Informació de l'item - Item information
Title: Interference and diffraction analysis of holographic gratings using the Finite-Difference Time-Domain method
Authors: Francés, Jorge | Neipp, Cristian | Pérez Molina, Manuel | Bleda, Sergio | Beléndez, Augusto
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Keywords: Holographic gratings | FDTD | Interference | Diffraction
Knowledge Area: Óptica | Física Aplicada
Date Created: Jun-2010
Issue Date: 6-Sep-2010
Publisher: AMPTAC - Associação Portuguesa de Mecânica Teórica, Aplicada e Computacional
Citation: FRANCÉS MONLLOR, Jorge, et al. "Interference and diffraction analysis of holographic gratings using the Finite-Difference Time-Domain method". En: EngOpt2010 [Recurso electrónico] : 2nd International Conference on Engineering Optimization, Lisboa, 6-9 sept. 2010. Lisboa : AMPTAC, 2010. ISBN 978-898-96264-3-0
Abstract: The Finite-Difference Time-Domain method (FDTD) is based on a time-marching algorithm that has proven accurate in predicting microwave scattering from complicated objects. In this work the method is applied at optical wavelengths, more concretely the method is applied to rigorously analyze holographic gratings for the near-field distribution. It is well known that diffraction gratings with feature sizes comparable to the wavelength of light must be treated electromagnetically, because the scalar diffraction theories, including Fourier and Fresnel approximations, no longer apply. The FDTD method permits to analyze the electromagnetic field distribution in function of time and space. In optical wavelenghts the simulation of wide areas implies more memory and time processing. For that reason, some add-ons are included in order to correctly calculate the far field distribution obtained from the numerical near-field values computed in the simulation region. As a consequence the total grid simulation size can be reduced improving the performance of the simulation, in terms of memory usage and time processing. Values in the near-field region are computed due to the illumination of the grating by means of a plane wave with different angle of incidence. In addition, we compare the results obtained by the FDTD method to those obtained using the Kogelnik's theoretical expressions applied to diffraction gratings. As it will be seen in this work there is good agreement between numerical and analytical values, thus validating our FDTD implementation.
Sponsor: This work was supported by the Ministerio Ciencia e Innovación of Spain under project FIS2008-05856-C02-02 and by the ”Generalitat Valenciana” of Spain under project ACOMP/2010/156.
URI: http://hdl.handle.net/10045/16172
ISBN: 978-898-96264-3-0
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Peer Review: si
Appears in Collections:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.
INV - Acústica Aplicada - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailEngOpt2010_Lisboa_sept_2010.pdf2,39 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.