In-situ synthesis of encapsulated N-doped carbon metal oxide nanostructures for Zn-air battery applications

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142182
Información del item - Informació de l'item - Item information
Título: In-situ synthesis of encapsulated N-doped carbon metal oxide nanostructures for Zn-air battery applications
Autor/es: Flores-Lasluisa, Jhony Xavier | García-Rodríguez, Mario | Cazorla-Amorós, Diego | Morallon, Emilia
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros | Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Bifunctional electrocatalyst | CO2 activation | Co-Nx-C species | Co/MnO heterointerfaces | Zn-air battery
Fecha de publicación: 15-abr-2024
Editor: Elsevier
Cita bibliográfica: Carbon. 2024, 225: 119147. https://doi.org/10.1016/j.carbon.2024.119147
Resumen: La, Mn and Co-based materials with diverse compositions encapsulated in N-doped carbon materials were synthesized by an in-situ sol-gel method. The as-prepared materials were physically activated with CO2 giving as a result composites with excellent performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The composites were characterized by different physicochemical techniques revealing the importance of porosity created by CO2 activation. This crucial step increases the number of accessible active sites such as Co-Nx-C sites, Co/MnO heterointerfaces and graphitic N groups. Moreover, the formation of La2O2CO3 was detected to enhance electrical conductivity and electrochemical performance and it is active for ORR. Although the composite containing La, Mn and Co has less concentration of the highly active sites, its small particle size favour a better distribution of these sites. The Co-containing composites were tested as air-electrodes in a Zn-air battery and compared to commercial electrocatalysts. All composites showed a better operation in terms of higher cyclability and higher energy density which is a consequence of metal nanostructures encapsulation in N-doped porous carbon shells. Interestingly, the pure Co-based composite showed an outstanding performance related to the high concentration of the Co-Nx-C active sites that provide high activity and stability.
Patrocinador/es: The authors would like to thank PID2022-137566OB-I00 and PID2021-123079OB-I00 projects funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”, by the “European Union”. M. García-Rodríguez thanks the Ministerio de Universidades for the FPU20-01746 grant.
URI: http://hdl.handle.net/10045/142182
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2024.119147
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.carbon.2024.119147
Aparece en las colecciones:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailFlores-Lasluisa_etal_2024_Carbon.pdf6,32 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.