Decoupled supercapacitive electrolyzer for membrane-free water splitting

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141402
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorElectrocatálisis y Electroquímica de Polímeroses_ES
dc.contributor.authorToledo-Carrillo, Esteban A.-
dc.contributor.authorGarcía-Rodríguez, Mario-
dc.contributor.authorSánchez-Moren, Lorena M.-
dc.contributor.authorDutta, Joydeep-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Materialeses_ES
dc.date.accessioned2024-03-12T10:49:46Z-
dc.date.available2024-03-12T10:49:46Z-
dc.date.issued2024-03-06-
dc.identifier.citationScience Advances. 2024, 10: eadi3180. https://doi.org/10.1126/sciadv.adi3180es_ES
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/10045/141402-
dc.description.abstractGreen hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm–by–5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.es_ES
dc.description.sponsorshipE.A.T.-C. would like to thank the National Research and Development Agency of Chile (ANID) for the doctoral scholarship “Beca Chile” 2018-72190682. M.G.-R. and L.M.S.-M. would like to thank Campus Iberus for Erasmus+ KA103 scholarship and Facultad de Ciencias of University of Alicante for the internship scholarship. J.D. would like to acknowledge partial financing from Vinnova (diary no. 2021-02313) and Åforsk (ref. no. 21-105).es_ES
dc.languageenges_ES
dc.publisherAmerican Association for the Advancement of Sciencees_ES
dc.rights© 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).es_ES
dc.subjectDecoupled supercapacitive electrolyzeres_ES
dc.subjectMembrane-free water splittinges_ES
dc.titleDecoupled supercapacitive electrolyzer for membrane-free water splittinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1126/sciadv.adi3180-
dc.relation.publisherversionhttps://doi.org/10.1126/sciadv.adi3180es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Aparece en las colecciones:INV - GEPE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailToledo-Carrillo_etal_2024_SciAdv.pdf3,26 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.