Structural design and particle size examination on NiO-CeO2 catalysts supported on 3D-printed carbon monoliths for CO2 methanation

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/141314
Información del item - Informació de l'item - Item information
Títol: Structural design and particle size examination on NiO-CeO2 catalysts supported on 3D-printed carbon monoliths for CO2 methanation
Autors: Martínez-López, Iván | Martínez-Fuentes, José Clemencio | Bueno-Ferrer, Juan | Davó-Quiñonero, Arantxa | Guillén-Bas, Esteban | Bailón-García, Esther | Lozano-Castello, Dolores | Bueno López, Agustín
Grups d'investigació o GITE: Materiales Carbonosos y Medio Ambiente
Centre, Departament o Servei: Universidad de Alicante. Departamento de Química Inorgánica
Paraules clau: 3D printing | Ceria | Nanoparticle | CO2 methanation | Nickel | Monolith
Data de publicació: 8-de març-2024
Editor: Elsevier
Citació bibliogràfica: Journal of CO2 Utilization. 2024, 81: 102733. https://doi.org/10.1016/j.jcou.2024.102733
Resum: 3D-printed high-surface carbon monoliths have been fabricated and tested as catalyst supports of CO2 metha nation active phases (NiO-CeO2, 12 wt% Ni). The carbon carriers show a developed microporosity and good adherence to the catalytic phases of NiO-CeO2, showing great stability and cyclability. Two monolith designs were used: a conventional parallel-channeled structure (honeycomb) and a complex 3D network of non-linear channels built upon interconnected circular sections (circles), where flow turbulences along the reactant gas path are spurred. The effect of the active phases particle size on the catalyst distribution and the overall per formance has been assessed by comparing NiO-CeO2 nanoparticles of 7 nm verage (Np), with a reference counterpart of uncontrolled structure (Ref). The improved radial gases diffusion in the circles monolith design is confirmed, and nanoparticles show enhanced CO2 methanation activity than the uncontrolled-size active phase at low temperatures (< 300 ºC). On the contrary, the Ref catalysts achieve higher CH4 production at higher temperatures, where the reaction kinetics is controlled by mass transfer limitations (T > 300 ºC). SEM and Hg porosimetry evidence that nanoparticles are deposited at deeper penetration through the narrow micropores of the carbon matrix of the monolithic supports, which tend to accumulate on the channels surface remaining more accessible to the reactant molecules. Altogether, this study examines the impact of the channel tortuosity and the active phase sizing on the CO2 methanation activity, serving as ground knowledge for the further rational and scalable fabrication of carbon monolith for catalytic applications.
Patrocinadors: The authors thank the financial support of the Spanish Ministry of Science and Innovation (Projects PID2019-105960RB-C22, TED2021-129216B-I00 and PDC2022-133839-C22), Generalitat Valenciana (Projects CIPROM/2021/74, MFA/2022/036), and the EU NextGener ation (PRTR-C17.I1). ADQ acknowledges the support from the Spanish Ministry of Science and Innovation (RYC2021-034791-I).
URI: http://hdl.handle.net/10045/141314
ISSN: 2212-9820 (Print) | 2212-9839 (Online)
DOI: 10.1016/j.jcou.2024.102733
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisió científica: si
Versió de l'editor: https://doi.org/10.1016/j.jcou.2024.102733
Apareix a la col·lecció: INV - MCMA - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
ThumbnailMartinez-Lopez_etal_2024_JCO2Utilizat.pdf5,12 MBAdobe PDFObrir Vista prèvia


Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.